Zahra, A., Kanwal, N.
, Rehman, N. U., Ehsan, S. & McDonald-Maier, K. D. (2017).
Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition.
Computers in Biology and Medicine,
88, 132-141.
https://doi.org/10.1016/j.compbiomed.2017.07.010
Wang, Z., Chen, L., Chen, H., Yang, J.
& Rehman, N. U. (2025).
Graph signal processing meets machine learning: Multi-scale spatial-temporal ensemble learning methodology for air quality forecasting.
Expert Systems with Applications,
291, Article 128538.
https://doi.org/10.1016/j.eswa.2025.128538
ur Rehman, N., Ehsan, S., Abdullah, S. M. U., Akhtar, M. J., Mandic, D. P. & McDonald-Maier, K. D. (2015).
Multi-Scale pixel-based image fusion using multivariate empirical mode decomposition.
Sensors (Switzerland),
15(5), 10923-10947.
https://doi.org/10.3390/s150510923
Saleem, S., Naqvi, S. S., Manzoor, T., Saeed, A.
, Rehman, N. U. & Mirza, J. (2019).
A Strategy for Classification of "Vaginal vs. Cesarean Section" Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings.
Frontiers in Physiology,
10.
https://doi.org/10.3389/fphys.2019.00246
Sadiq, M. T., Yu, X., Yuan, Z., Aziz, M. Z.
, Rehman, N. U., Ding, W. & Xiao, G. (2022).
Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition.
IEEE Transactions on Emerging Topics in Computational Intelligence,
6(5), 1177-1189.
https://doi.org/10.1109/tetci.2022.3147030
Rehman, N. U., Abbas, S. Z., Asif, A., Javed, A., Naveed, K. & Mandic, D. P. (2017).
Translation invariant multi-scale signal denoising based on goodness-of-fit tests.
Signal Processing,
131, 220-234.
https://doi.org/10.1016/j.sigpro.2016.08.019
Rehman, N., Khan, M. M., Sohaib, M. I., Jehanzaib, M., Ehsan, S. & McDonald-Maier, K. (2014).
Image fusion using multivariate and multidimensional EMD. In
2014 IEEE International Conference on Image Processing (ICIP) IEEE.
https://doi.org/10.1109/icip.2014.7026035
Rehman, N., Ehsan, S., Naveed, K., McDonald-Maier, K. D. & Safdar, M. W. (2015).
Dynamically sampled multivariate empirical mode decomposition.
Electronics Letters,
51(24), 2049-2051.
https://doi.org/10.1049/el.2015.1176
Park, C., Looney, D.
, Rehman, N. U., Ahrabian, A. & Mandic, D. P. (2013).
Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
21(1), 10-22.
https://doi.org/10.1109/tnsre.2012.2229296
Naveed, K., Shaukat, B., Ehsan, S., Mcdonald-Maier, K. D.
, Rehman, N. U. & Baghaie, A. (Ed.) (2019).
Multiscale image denoising using goodness-of-fit test based on EDF statistics.
PLoS One,
14(5), e0216197.
https://doi.org/10.1371/journal.pone.0216197
Morante Moreno, M., Frølich, K., Shahzaib, M., shakil, S.
& Rehman, N. U. (2024).
Multiscale Functional Connectivity analysis of episodic memory reconstruction.
Frontiers in Cognition,
3, Article 1433234.
https://doi.org/10.3389/fcogn.2024.1433234
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Looney, D.
, Rehman, N. U., Mandic, D., Rutkowski, T. M., Heidenreich, A. & Beyer, D. (2009).
Conditioning multimodal information for smart environments. In
2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) IEEE.
https://doi.org/10.1109/icdsc.2009.5289373
Lang, X.
, Rehman, N. U., Zhang, Y., Xie, L. & Su, H. (2020).
Median ensemble empirical mode decomposition.
Signal Processing,
176, Article 107686.
https://doi.org/10.1016/j.sigpro.2020.107686
Khawaja, A., Khan, T. M., Naveed, K., Naqvi, S. S.
, Rehman, N. U. & Nawaz, S. J. (2019).
An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser.
IEEE Access,
7, 164344-164361.
https://doi.org/10.1109/access.2019.2953259
Khan, T. M., Khan, M. A. U.
, Rehman, N. U., Naveed, K., Afridi, I. U., Naqvi, S. S. & Raazak, I. (2022).
Width-wise vessel bifurcation for improved retinal vessel segmentation.
Biomedical Signal Processing and Control,
71(Part A), Article 103169.
https://doi.org/10.1016/j.bspc.2021.103169
Khan, N., Baig, F., Nawaz, S.
, Rehman, N. U. & Sharma, S. (2016).
Analysis of Power Quality Signals Using an Adaptive Time-Frequency Distribution.
Energies,
9(11), 933.
https://doi.org/10.3390/en9110933
Jensen, M. H., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S. E., Simonsen, C. Z., Grønhøj, M. H., Rom Poulsen, F.
, Rehman, N. U. & Korshoej, A. R. (2023).
Reliability and Performance of the IRRAflow® System for Intracranial Lavage and Evacuation of Hematomas - A Technical Note.
https://doi.org/10.1101/2023.07.07.23292372
Jensen, M. H., Rasmussen, M., Mohamad, N., Dyrskog, S. E., Thorup, L., Mikic, N., Wismann, J., Grønhøj, M. H., Rom Poulsen, F.
, Nazari, M., Rehman, N. U., Simonsen, C. Z. & Korshoej, A. R. (2023).
Safety, harm, and efficacy of IRRAflow® versus external ventricular drainage for intraventricular hemorrhage: A randomized clinical trial. medRxiv.
https://doi.org/10.1101/2023.07.08.23292286