
Master’s Thesis

Sparse Approximations and Compressive Sensing in
Centralized and Distributed Systems

Kasper C. Klausen
Master of Science in Computer Engineering

Aarhus University
Department of Engineering

4th of June 2019

Title page

Thesis title Sparse Approximations and Compressive Sensing in Centralized and
Distributed Systems

Thesis ECTS 30

University Aarhus University

Department Department of Engineering

Section Section of Electrical and Computer Engineering

Master’s program Computer Engineering

Author Kasper C. Klausen

Student number 201303660

Date of submission 4th of June 2019

Supervisor Christian Fischer Pedersen

Preface

The present master’s thesis marks the end of the master education in Computer Engineering,
at the faculty of Science and Technology at Aarhus University. The project was a study on its
own, in investigating matching pursuit algorithms and extensions into the field of wireless sensor
networks.

During the project time, three presentations were held for students taking Research and De-
velopment courses in Compressive Sensing. These presentation covered; compressive sensing,
matching pursuit algorithms and distributed compressive sensing.

I would like to thank my supervisor Christian Fischer Pedersen for introducing me to the fasci-
nating area of Compressed Sensing, as well as supervising me throughout the project

i of v

Abstract

The present thesis provides a summary of Matching Pursuit reconstruction algorithms. For
comparison, the algorithms have been designed in a uniform manner and analyzed with respect to
time and space complexity. New implementation of the algorithms is provided, which have been
used in numerical experiments. Based on these experiments it was found that the algorithmic
approache of Subspace Pursuit, which initially tries to estimate the complete support set of
the desired signal followed by refining iterations, has slightly superior performance compared
to iteratively estimating small parts of the support set. This approach provides relatively fast
convergence, allowing for a low upper bound for iterations, as well as the use of a stopping criteria
considering decreasing residual.
Additionally, a selection of methods and algorithms for using Compressed Sensing in distributed
systems have been covered. It was found that using compressed sensing in wireless sensor net-
works allowed for load balancing comparable to that of data aggregation. Moreover Distributed
Compressed Sensing enabled distributed encoding comparable to Distributed Source Coding. In
general, it was found that using compressed sensing in wireless sensor networks fulfills domi-
nating requirements in this area, which aim at energy efficient sensors. The reason for this was
found to be that compressed sensing, allows for sampling the signal in a compressed form, thus
avoiding the computational overhead associated with other compression approaches. In combi-
nation with this relative simple combined sampling and compression, compressed sensing moves
computational complexity to the reconstruction side, thus giving the opportunity to keep sensor
notes simple.

ii of v

Resume

Dette speciale give en summering a Matching Pursuit rekonstrurerings algoritmer. For sammen-
ligning, er algoritmerne designed på en ensartet måde, såvel som analyseret i forhold til tids og
plads kompleksitet. Nye implementering af algoritmerne er skrevet, og disse blevet brugt i nu-
meriske eksperimenter. Baseret på disse eksperimenter, blev det observeret at Subspace Pursuit
algoritmen, som starter ud med at prøve at estimere hele support sættet af det komprimerede
signal efterfulgt af iterativ fintuning, giver en anelse bedre performance end iterativt at estimere
mindre dele af support sættet. Subspace Pursuit giver relativ hurtig konvergerings rater, hvilket
gøre det muligt at implementere algoritmen med lav øvre grænse for iterationer, såvel som brugen
af et stop kriterie, baseret på faldende residual.
Desuden er et udvalg af metoder og algoritmer som tillad brugen af Compressed Sensing i dis-
tribuerede systemer blev gennemgået. Det blev konkluderet af brugen af Compressed Sensing i
trådløse sensor netværker kunne introducere load balancing sammenlignelig med data aggrega-
tion. Herudover kan brugen af distribueret Compressed Sensing give encoding sammenlignelig
med Distributed Source Coding. Generelt blev det observeret at brugen af compressed sensing
i trådløse sensor netværker, tilfredsstiller en rækker krav om simpelt sensor design. Grunden til
dette er at Compressed Sensing tillader et signal af blive samplet i komprimeret form, og derved
undgå at skulle bruger energi på anden form for komprimering. Udover den relativ simple
kombinering af sampling og komprimering, flytter Compressed Sensing dele af den overordnede
kompleksitet til rekonstruktionen af signaler, hvilket også bridrager til at kunne holde selve sensor
enhederne simple.

iii of v

CONTENTS

Preface . i
Abstract . ii
Resume . iii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Organisation . 2

2 Background 3
2.1 Sparse Signals . 3
2.2 Compression . 3

2.2.1 Transform Coding . 3
2.3 Compressed Sensing . 4

2.3.1 Measurement Matrices . 6
2.3.2 `1 Minimization Reconstruction . 7
2.3.3 Matching Pursuit Reconstruction . 8

2.4 Distributed Data Gathering . 10
2.4.1 Aggregation . 11
2.4.2 Network Coding . 12
2.4.3 Distributed Source Coding . 12

2.5 Distributed Compressed Sensing . 13
2.5.1 Signal Models . 14

3 Matching Pursuit for Sparse Approximation and Compressive Sensing 15
3.1 Forward Selection . 15

3.1.1 Orthogonal Matching Pursuit (OMP) . 15
3.1.2 Stagewise Orthogonal Matching Pursuit (StOMP) 16
3.1.3 Regularized Orthogonal Matching Pursuit (ROMP) 18
3.1.4 Generalized Orthogonal Matching Pursuit (gOMP) 20

3.2 Hybrid Selection . 21
3.2.1 Compressive Sampling Matching Pursuit (CoSaMP) 21
3.2.2 Subspace Pursuit (SP) . 23

3.3 Joint Compressed Sensing Problems . 24
3.3.1 Joint Subspace Pursuit (JSP) . 24

4 Distributed Compressed Sensing 27
4.1 Compressive Data Gathering (CDG) . 27

4.1.1 Application . 27
4.2 Distributed Parallel Pursuit (DIPP) . 29

4.2.1 Parallel Pursuit with Side Information (SIPP) 30
4.2.2 Consensus . 31
4.2.3 Expansion . 32
4.2.4 Application . 33

4.3 Common-Innovation Subspace Pursuit (CISP) . 34
4.3.1 EVD based Common Subspace Pursuit (ECSP) 36
4.3.2 Projection based Innovation Subspace Pursuit (PISP) 36

iv of v

4.3.3 Application . 36

5 Numerical Experiments and Results 38
5.1 Matching Pursuit Experiments . 38

5.1.1 Data Dimensions and Reconstruction . 38
5.1.2 Reconstruction Error . 54

5.2 Distributed Compressed Sensing Experiments . 54
5.2.1 Obscure Sparsity . 55
5.2.2 Multiple Correlated Signals . 59
5.2.3 CISP Performance Verification . 61
5.2.4 Unknown Common Support Set Size . 62

6 Discussion 65
6.1 Measurement Matrix . 65
6.2 Matching Pursuit . 65

6.2.1 Forward Selection . 66
6.2.2 Hybrid Selection . 67
6.2.3 Different Signal Models . 67

6.3 Distributed Compressed Sensing . 67
6.3.1 Compressive Data Gathering . 68
6.3.2 Distributed Parallel Pursuit . 68
6.3.3 Common-Innovation Subspace Pursuit . 68

7 Conclusion 71
7.1 Contributions and Conclusion . 71
7.2 Perspectives and Further Work . 72

8 References 73

A Algorithm Implementations A1
A.1 Orthogonal Matching Pursuit (OMP) . A1
A.2 Stagewise Orthogonal Matching Pursuit (StOMP) A2
A.3 Regularized Orthogonal Matching Pursuit (ROMP) A3
A.4 Generalized Orthogonal Matching Pursuit (gOMP) A5
A.5 Compressive Sampling Matching Pursuit (CoSaMP) A6
A.6 Subspace Pursuit (SP) . A7
A.7 Joint Subspace Pursuit (JSP) . A8
A.8 Sequential test - Distributed Parallel Pursuit (DIPP) A10
A.9 Common-Innovation Subspace Pursuit (CISP) . A13

B List of Algorithms A15

C Notation A16

v of v

1
INTRODUCTION

An ever-increasing amount of data acquisition and processing puts increasing requirements on
the involved systems. Data handling systems often have to deal with large quantities of samples,
as a result of high Nyquist rates [1] in many applications. In order to sufficiently transmit and
store these growing amounts of data, compression has become a necessity [2]. For this com-
pression, transform coding is widely used in relation to data ranging from environmental data
to image and audio to medical scanners [3, 4, 5]. A common aspect of these kinds of data is
transform sparsity. Transform sparsity implies that there exists a transform domain, in which
the signal can be sparsely represented. Though most natural signals are not directly sparse
in any transform domain, they are still compressible, as they only have a few large significant
coefficients in a transform domain. The rest of the coefficients can often be discarded, without
significant signal quality degradation, which is known as lossy compression [4]. However, this
sample then compress approach, is rather inefficient, as parts of the data are being discarded
right after sampling. Moreover, for applications like medical scanners and radars, increasing the
sampling rate, to obtain the Nyquist rate, can be rather expensive [2]. Compressed sensing is
an emerging field within signal processing, which deals with the inefficiency of the sample then
compress approach, by combining the sampling and compression. This is done by applying a
measurement matrix, which performs a dimension reduction during sampling, which result in
a smaller quantity of linear measurements, thereby reducing the required sampling rate. This
is possible since many natural signals contain relatively limited information in relation to their
ambient dimension [2, 6, 4].

The application of compressed sensing raises two problems that must be addressed. First, a mea-
surement matrix must be designed, such that the information in the signal is not damaged by
the dimensionality reduction. Second, a reconstruction algorithm must be designed to recover
the signal from the resulting underdetermined system [2, 6]. The measurement matrix must
satisfy the restricted isometry property, which implies an isometric mapping of compressible sig-
nals [2, 6]. Dealing with solutions of underdetermined systems, when interested in compressible
signals, is often a convex optimization problem, that reduces to a linear program known as Ba-
sis Pursuit [2, 7, 8]. However, while the convex optimization is powerful for computing sparse
representations, they are associated with heavy computational burdens [2, 6]. To overcome this
computational burden, while still being able to reconstruct signals, a variety of iterative algo-
rithms have been proposed. These algorithms are able to estimate the signal in a greedy fashion
by iteratively estimating the sparse support set [9, 10, 11, 12, 13, 14].

An area that stands to highly benefit from compressed sensing is wireless sensor networks. With
more and more sensor motes being deployed to monitor, everything from the environment and
smart buildings, to people’s health and logistics. With these large quantities of sensors being
deployed, there is a desire to keep their cost low, which, however, significantly decreases their
battery and computational power. A common task in sensor networks is to wirelessly propa-
gate information, however, the wireless communication requires large quantities of the available
limited battery power. Therefore, research has been focusing on decreasing the total amount of
communication in wireless systems, without compromising the intent of the system. Strategies

Page 1 of 75

used for this purpose have covered aggregation of data, network coding and distributed source
coding, where common goals are data compression and load balancing [3].
Another common task for sensor networks is to monitor and detect events, which can require sig-
nificant amounts of information from multiple sensors [3]. The relative simplicity of compressed
sensing on the acquisition side, makes compressed sensing a suitable fit for these tasks. Addi-
tionally, when applying compressed sensing, the workload is shifted to the reconstruction, which
in wireless sensor networks often is performed on a more powerful device. Moreover, compressed
sensing is able to introduce load balancing, as the sensors are able to combine their measure-
ments, which limits the workload of bottleneck notes close to the sink, as these then have to
propagate less information [6].

1.1 Problem Statement

The focus of the present master’s thesis is to design, implement, test, compare, and document
a selection of Matching Pursuit inspired algorithms for sparse approximations and compressive
sensing with applications to both centralized and distributed systems. The algorithms must be
optimized with regard to time and space complexities. Moreover, the algorithms must be proven
functional via concrete experiments. To quantify the quality of the algorithms, comparative
evaluations should be carried out via objective metrics; in the comparisons, time and space
complexity aspects should also be considered. Further, the algorithms should be assessed against
the state of the art.

1.2 Organisation

The rest of this thesis is structured as follows:

In chapter 2, required background knowledge is covered, this includes prerequisites for compressed
sensing as well as other forms of compression for comparison.
In chapter 3, a selection of Matching Pursuit algorithms will be summarized and analyzed, with
the purpose of understanding their working and being able to implement them. Moreover, the
analysis will be performed for the worst-case scenarios of arbitrary signals, in order to clarify
requirements for stable implementations. An extension to handle multiple correlate signals will
be given, to ease the transaction to distributed setups.
In chapter 4, different ways of utilizing compressed sensing in distributed systems will be covered,
in order to show the power of compressed sensing.
In chapter 5, numerical experiments will be performed. The purpose behind these experiments
is to; implement more effective algorithms, give an example of the use of matching pursuit
algorithms with a given basis. As well as show and verify the workings of Distributed Compressed
Sensing. Additionally, the results for each algorithm will be discussed.
In chapter 6, the overall result of the project will be drawn together.
In chapter 7, the work will be concluded.
In chapters 8, 9 and 10, a list of the algorithms will be presented as well as an explanation of
the notations used thought out the thessi, and a list of references used will be given.

Page 2 of 75

2
BACKGROUND

2.1 Sparse Signals

Signal processing is a field dealing with acquisition, processing, and extraction of information
from different kinds of signals. In order to work with signals, much of signal processing is based
on modeling signals as vectors, in an appropriate vector space. While this may be reasonable, in
a lot of cases not all possible vectors model a valid signal. Based on this a model of the signal of
interest is often useful to apply a priori knowledge, to efficiently handle the signal. Such models
are known as a basis or dictionary, well known examples are Fourier and Wavelet [6].
In a wide variety of settings, valid signals can often be approximated as a linear combination of
elements from a known basis. If this approximation is exact and only consists of a few elements
of the basis, the signal is said to be sparse, in that basis or transform domain. This is more
formally stated as; a signal x is s-sparse, when its represention in a basis has at most s nonzero
coefficients: ||x||0 ≤ s. Though many real-world signals are not completely sparse, often their
representation in a certain basis has only a few large and many small coefficients. Such signals
are known as compressible signals, which can be sufficiently approximated by the few elements
of the basis, associated with the few large coefficients [6, 2].
Moreover, a basis can be formed as an orthonormal quadratic matrix A ∈ Rn×n. For such a
matrix the following holds: ATA = I, which implies that for two vectors x ∈ Rn and z ∈ Rn the
following holds

z = Ax (2.1.1)

and

x = AT z (2.1.2)

which allows for relative simple transition between the two domains [7].
Sparsity has long been utilized in signal processing for compression using transform coding [6].

2.2 Compression

The Shannon-Nyquist sampling theorem states that in order to exactly reconstruct a signal
from its samples, the samples must be acquired at a rate higher than twice the highest present
frequency, known as the Nyquist rate [1, 6]. In many application, it can be either very expensive
or time consuming to comply to the Nyquist rate, or it can result in a quantity of samples making
compression a necessity prior to storage or transmission [2, 6, 5]. Since many natural signals are
sparse, or at least compressible, sparse signal models suggest that many natural high-dimensional
signals contain relatively limited information in relation to their ambient dimensions. Based on
this a widely used method of compression is known as transform cording [6].

2.2.1 Transform Coding

Transform coding is a subcategory of data compression that utilized the compressibility of sig-
nalsin a well known basis [4]. The overall process that transform coding and decoding follows is
illustrated in figure 2.2.1.

Page 3 of 75

Figure 2.2.1. Original sampling and compression. Initially, the entire signal is sampled, with regard
to the Nyquist rate. Then compression is performed using a selected approach, before the compressed
signal is transmitted or stored. When the compressed signal is being received or loaded decompression is
performed to reconstruct the signal.

The process of transform coding requires the signal to be fully sampled, with regard to the
Nyquist rate. Then the signal is transformed into a well known basis, as explained in section 2.1,
in which it is sparse or compressible. The significant coefficients of this transformation are
then used as a compressed representation of the signal, which can then be decompressed. More
specifically transform coding consists of three steps: Transform, quantization, and encoding.
There exists a variety of different strategies to this, of which JPEG is one of the best known.
JPEG uses the discrete cosine transform for transformation, a uniform midtread quantization to
quantize, and prefix coding for the encoding [4].
More generally transform coding can be subdivided into two categories; lossless and lossy com-
pression. Lossy compression is more effective than the lossless counterpart, at the cost of recon-
struction quality, by discarding the small transform coefficients. Though since lossy compression
is able to obtain significant data size reduction before significant information loss occurs, these
are widely used [4].

2.3 Compressed Sensing

In many applications, it can be either very expensive or time consuming to comply to the Nyquist
rate, or it can result in a number of samples making compression a necessity prior to storage or
transmission [2, 6, 5]. However, by applying techniques from Compressed Sensing, sparse and
compressible signals can be sampled at a lower rate. Consider the signal vector x ∈ Rn. Any
such signal can be represented as a linear combination of columns, taken from an orthogonal
basis Ψ ∈ Rn×p. This takes the following form

x = Ψz (2.3.1)

with z ∈ Rp, being an equal representation of x in the basis Ψ. This implies that x and z are
equivalent representations of the same signal, though in different domains. In order for Com-
pressed Sensing to be applicable there must exist a known pre-determined basis in which the
signal is either sparse, i.e. having only a few nonzero coefficients, or compressible, i.e. having
only a few large coefficients and many small coefficients [2].

When applying Compressed Sensing the signal x is measured by sampling it in relation to a
measurement matrix Φ ∈ Rm×n with m < n, resulting in a compressed signal representation
y ∈ Rm. This is equivalent to

y = Φx (2.3.2)

Page 4 of 75

Combining eq. (2.3.2) with eq. (2.3.1) give

y = Φx = ΦΨz (2.3.3)

This equation is illustrated in figure 2.3.1. From here the task is to reconstruct x (or z) from
y. Though due to the dimensions of Φ eq. (2.3.3) is under-determined, making this an ill-posed
problem. However, due to the sparsity requirement stated earlier and some restriction that must
be imposed on Φ, this is feasible. The restriction on Φ will be covered in section 2.3.1.
For simplicity, when dealing with reconstruction algorithms, x is often assumed to be sparse
in its own domain. This introduces simplicity as it allows for focusing on the y = Φx part of
eq. (2.3.3). This simplification is reliable, assuming the restriction on the measurement matrix
are complied.

Figure 2.3.1. Relation between vectors and matrices. With y ∈ Rm the measurement vector, Φ ∈ Rm×n

the measurement matrix, Ψ ∈ Rn×n a known basis, z ∈ Rn a sparse representation of x in the Ψ domain,
and x ∈ Rn being the signal of interest. Based on figure 1 in [2]

The process of sampling while applying a measurement matrix, can be seen as combining the
sampling and compression steps of figure 2.2.1. This combination is the reason behind the name
Compressed Sensing. Compressed Sensing changes figure 2.2.1 into figure 2.3.2. The Compressed
Sensing step is often much more efficient than the sample then compress approach, this being
the main advantage of Compressed Sensing. Though this simplifies the acquistion aspect, it
increases the complexity of the reconstruction, for which reconstruction algorithms are required.
However, this tradeoff is an advantages in a wide range of application [6, 2, 5].

Figure 2.3.2. Compressive sensing, in relation to standard way figure 2.2.1. Initially a compressed rep-
resentation of the signal is being sampled using compressed sensing. Then the compressed representation
of the signal is being transmitted or stored. When the compressed signal is being received or loaded a
reconstruction algorithm is used to recreate the originl signal.

Page 5 of 75

2.3.1 Measurement Matrices

In order to be able to reconstruct all s sparse signals from their measurement y, then Φ must not
map two distinct s sparse signals x and x′ to the same y, i.e. Φx 6= Φx′, otherwise, it would not
be possible to distinguish them based on the measurements. From the fact that if Φx = Φx′ it
follows that Φ(x−x′) = 0, with vector x−x′ having a sparsity of at most 2s. Thus Φ uniquely
maps all s sparse signals if and only if the null space of Φ contains no vector with sparsity of 2s.
Meaning that any collection of 2s columns taken from Φ must be linearly independent [6]. This
can also be seen as a parallel to the Nyquist rate, as it also gives anti-aliasing.
The above only states when reconstruction is possible for exactly sparse signals. Though when
signals are compressible, or approximately sparse, more restrictive conditions is required, related
to the null space of Φ. This is called the Null Space Property, and it stats that the vectors in
the null space of Φ should not be concentrated on a small subset of indices[6].

2.3.1.1 Restricted Isometry Property (RIP)

When the measurements are subject to noise, an even stronger condition is needed, than the
Null Space Property. This is called the Restricted Isometry Property (RIP), and is defined as
[15, 6]

Definition 1 A matrix Φ satisfies the Restricted Isometry Property (RIP) of order s if there
exists a δs ∈ (0, 1) such that

1− δs ≤
||Φx||22
||x||22

≤ 1 + δs (2.3.4)

This can be interpreted as, if a measurement matrix Φ satisfy the RIP of order 2s, then Φ

approximately preserves the distance between any pair of s sparse vectors, thus making it robust
to noise, in other words the dimensionality reduction of

Φ

of s sparse signals, must be an isometric mapping [6]. Another required and related condition is
incoherence between the measurement matrix and sparsity basis. This implies that the rows of
the measurement matrix cannot sparsely represent the the columns of the basis and vice versa [2].

Verifying the RIP requires test of all the
(
n
s

)
combinations. However there exist certain matrices

known to satisfy the RIP and incoherence with high probability, examples are [2]:

1. Random matrices constructed from the discrete Fourier transform (DFT), by selecting m
rows, uniformly at random [6, 13, 14, 15].

2. Random matrices with entries i.i.d. sampled from a Gaussian distribution with mean 0

and variance 1/m, N (0, 1
m) [6, 13, 14, 15].

The latter is used for all of the performed experiments.

Page 6 of 75

2.3.2 `1 Minimization Reconstruction

With sparsity and the measurement matrix in place the final thing that is need is a reconstruc-
tion algorithm that can reconstruct the signal, or at least find its sparse approximation, based on
the compressed measurement y and the measurement matrix Φ. As state above, in section 2.3,
reconstruction is concerned with solving an underdetermined system y = Φx.

Solving an underdetermined system of the form y = Φx is a general problem of linear algebra.
Linear algebra states that the best solution is the one that minimizes the norm residual. Put
another way the goal is to find an x̂ that minimizes ||y −Φx̂||p, using a given `p norm [16].

`2 Minimization
The classical approach to solving this inverse problem, is to use the `2 norm, also known as
euclidean norm, having the form ||x||2 =

√∑n
i=1 xi. This sets up the following problem to be

solved

x̂ = argmin||x||2 s. t. Φx = y (2.3.5)

This optimization problem has the convenient closed form x̂ = Φ†y, using the Moore-Penrose
Pseudo inverse for when m ≤ n, which has the form Φ† = Φ∗ (ΦΦ∗)−1 [7, 16]. However this will
almost never result in a sparse solution, and is thus not a suitable option [2]. This is illustrated
in figure 2.3.3.

`0 Minimization
Since the `2 norm does not give the sparse result, the `0 norm could be used, as it counts the
number of non-zero elements of x, as ||x||0 = |supp(x)|. This changes the problem to be solved
to the form:

x̂ = argmin||x||0 s. t. Φx = y (2.3.6)

Which can recover the sparse signal exactly, with high probability. Unfortunately solving these
kind of systems is often computationally burdens some, as it generally requires a run though of
all possible solutions [6].

`1 Minimization
Using the `1 norm, also enables, with high probability, the finding of the sparse x. This has the
form:

x̂ = argmin||x||1 s. t. Φx = y (2.3.7)

This is a convex optimization problem, that reduces to a linear program known as Basis Pursuit
[8]. Basis Pursuit has a complexity of about O(n3)

Graphical representation

The above optimizations problems, can be illustrated graphically for the R2 case.

Page 7 of 75

(a) Using `2 norm, also known as
the euclidian norm.

(b) Using `1 norm, also known as
the Manhatten norm

(c) Using `0<p<1 norm, when p
is zero the unit circle reduces to
the axises

Figure 2.3.3. Graphical representation of the minimization for different norms. The solution set for
the optimization problems lies in the subspace A. The solution using a given `p is the point for which
the associated unitsphere, first touches the subspace A, when the size is increased. Based [17] figure 2.2

As figure 2.3.3 shows, the `0 and `1 norms, will find the sparse solution, which is lying on an
axis, as the other axis is then zero, where as the `2 norm rarely will find this [17].

2.3.3 Matching Pursuit Reconstruction

Though the convex optimization techniques provides strong guarantees, they are computationally
time consuming [13, 10, 17]. An alternative is greedy methods, which take an iterative approach
to approximating the signal support and coefficients. This results in a faster algorithms, tough
they might not offer as strong guarantees as the convex case [10, 6].
Matching Pursuit is a class of iterative greedy algorithms, that have received much attention in
compressed sensing [6].

2.3.3.1 General Framework

Matching Pursuit can be considered as a family of algorithms that share some common steps.
The fundamentals being iteratively estimation of the support set and coefficients, but can be
seen as a four step process[6, 13]

1. Support set estimation

2. Support merge

3. Coefficient estimation

4. Residual update

These steps can be formed as a general framework (algorithm 2.3.1). The algorithms are typically
initialized with a zero-vector as the initial estimate, an empty initial support set, and initial
residual equal to the provided measurement vector. Then over a number of iterations, the support
set is estimated, by selecting indices based on a matched filter. Doing each iteration the signal
can be estimated by solving the resulting well-determined system, of using only the columns of
the measurement matrix that are indexed by the current support set estimation. Based on this
estimation the the contribution of the currently estimated support set can be removed from the

Page 8 of 75

measurement vector, by compressing the estimated signal using the measurement matrix, and
subtracting the result from the initial measurement. residual [6].

Algorithm 2.3.1 Matching Pursuit framework
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

Output:

• An estimate x̂ ∈ Rn of the signal x

1: Initialize iteration counter k, support set λ, signal estimate x̂ and residual r

2: while stopping criterion is not met do
3: Calculate correlation between current residual and the measurement matrix (ΦT r)
4: Select and add new indexes based on this correlation
5: Update estimator for x and current residual using ||y −ΦI x̂||2
6: end while

The Matching Pursuit algorithms primarily differ on two points: 1) Determining when to stop
the iteration, and 2) how many indices to select each iteration [6].

2.3.3.2 Indices Selection Approaches

In general there are two overall approaches Which for this thesis has been named forward and
hybrid selection. These approaches shares commonalities with forward-, backward-, and hybrid
stepwise selection from the field of regression, from where the names are take [18].

Forward selection This approach selects indices in a forward manner and adds them to the
support set. The goal of the strategies following this approach, is to estimate as many indices
each iteration, without included wrong indices, i.e. indices not in the actual support set.

Page 9 of 75

Figure 2.3.4. General activity diagram for the iterations of the forward selection approach. Iterations
are performed until a give stopping criterion is met. Then for each iteration a mathced filter is applied.
Based on this mathced filter a number of indices is selected for the support set using a given selection
strategy. Then using the currently estimated support set, the original signal is estimated, before the
stopping criterion is tjecked.

Hybrid selection This approach aims at speeding up the process of support set estimation, by
overestimating the support set each iteration. This introduces the need for at bardward step,
that can remove wrongly estimated indices.

Figure 2.3.5. General activity diagram for the iterations of the hybrid selection approach. Iterations
are performed until a give stopping criterion is met. Then for each iteration a mathced filter is applied.
Based on this mathced filter a number of indices is selected for the support set using a given selection
strategy. Then using the currently estimated support set, the original signal is estimated. Since the
general selection approach for hybrid selection over estimates the signal a pruning step is introduces,
reducing the support set to the desired size. Then using the pruned estimated support set, the original
signal is estimated, before the stopping criterion is tjecked.

Different strategies within the two approaches will be discussed more in-depth in chapter 3.

2.4 Distributed Data Gathering

As increasing amounts of sensor networks are being deployed and based on the desire to keep
these sensor devices as cheap as possible. Increasing demands are put on their software. In

Page 10 of 75

order to keep these networks efficient and give them as long a life time as possible, certain
aspect has to be optimized. Especially the amount of communication most be kept as low as
possible, as transmitting and receiving are highly battery draining. Moreover, notes close to the
sink, that have to forward a lot of data, as illustrated in figure 2.4.1, is highly loaded, making
load balancing desirable. Additionally, the notes have limiting processing power, so advanced
compression techniques might not be possible [3].

Figure 2.4.1. Distributed network standard data delivery. Colorless nodes are data points, red node
is the sink. Numbers on the edges indicate data transmissions on the given link, to forward all data
readings to the sink.

2.4.1 Aggregation

When the goal is to limit the communication needed in networks, a simple approach which
introduces loadbalancing is data aggregation. Data aggregation generally consists of computing
a compressed representation of the data, or at least an approximately representation [3].
An example of data aggregation is computation of the mean temperature, and only forwarding
this, this can decrease the amount of data transmission, of that seen in figure 2.4.1 to that
of figure 2.4.2. This reduces the communication load of the nodes close to the sink, which can
increase the network life time, as these are important for keeping the connectivity. This strategies
is however quite limiting, as individual sensor reading can not be propogate this way [3].

Figure 2.4.2. Distributed network packet delivery with aggregation. Colorless nodes are data points,
red node is the sink. Numbers on the edges indicate packet transmissions, to forward all packets to the
sink, when aggregation is applied to the same network as in figure 2.4.1.

Page 11 of 75

2.4.2 Network Coding

If a source needs to send the information XY to a sink, and the network structure is known, a
path can be calculated, which can be used to minimize the amount of data transmission on each
link, like the one in figure 2.4.3. Here only half the message (or the XOR of the two halves)
is transmitted on each link. The sink(s) can then reconstruct the message, using simple logic
operations [3].

Figure 2.4.3. Network coding. Notes are colorless and sinks are red. When node S needs to send
data XY to the sinks and the network layout is known, a route can be calulated that allows for only
transmitting half the data on each link. S spilts the the data into the parts X and Y and send on part to
A and the other part to B. Then A and B forwards the received data, which either reaches sink T or U.
The transmission from both A and B reaches D, which calcuates the XOR’ed representation of the two
data halfs, and forwards this to both sinks, which can then reconstruct the original data.

2.4.3 Distributed Source Coding

Where aggregation is a simple way of introducing load balancing, it is limited to scenarios of the
kind described in section 2.4.1. When specific data values of different notes are needed at the
sink, more advanced methods are required [3].
Compression techniques covered in section 2.2 can be applied, however, they might require com-
munication among notes (as in figure 2.4.4a), which is counter intuitive, as the goal is to decrease
the communication [3].
Distributed Source Coding utilizes separate encoding and joint decoding of correlated data, only
requiring the communication as in figure 2.4.4b. The rate at which the two sources independently
can compress their data, while the sink being able to reconstruct, is bound by the Slepian-Wolf
Theorem [3].

(a) The two sources, ex-
changes information in-
order to compress and
send to the sink.

(b) The correlation be-
tween the data of the
two sources is know, so
no information exhange is
needed

Figure 2.4.4. Two sources(colorless) gather correlated data, to be send to the sink(red)

Page 12 of 75

2.4.3.1 Slepian-Wolf Theorem

The most straight forward approach for the two sources of figure 2.4.4b to send their data to the
sink, without communicating with each, is to send the full uncompressed data. Though if their
data is correlated, distributed source coding can be applied, which can achieve the same overall
communication reduction as if both signals, were available to each source, this is known as the
Slepian-Wolf Theorem. This is based on that if one of the sources, transmits its entire signal,
the other source can send a compressed representation that can be reconstructed at the sink, as
the correlation can be used to reconstruct the second signal, using the first one. This will be
more clearly demonstrated below [3].

DISCUS Distributed Source Coding Using Syndromes (DISCUS) presented by Pradhan and
Ramchandran is the first approach for constructing codes, achieving the Slepian-Wolf bound. It
is often illustrated by the following example.
Given two sources X and Y , both wanting to send a three bit long data stream to the source.
Assuming that source Y sends all three bits. Then source X can send fewer than three bit
from which the sink can reconstruct the original three bits, assuming a correlation between the
sources. The correlation structure assumed, is that the three bits from X only can differ in one
position, from the bits of Y . Then when Y sends the message 000, the message from X can
only be 000, 001, 010 or 100. Thus by dividing all possible messages in to pairs, that differ on
more than one bit (e.g. { 001, 110}, { 010, 101}, { 100, 011} and { 000, 111}), X only need to
send enough information, for the source to distinguish between the four pairs, which would only
require two bits. The sources then select the three bit message, in the indicated pair, that differ
the least from the message received from Y [3].

2.5 Distributed Compressed Sensing

The increasing interested in and deployment of wireless sensor networks, as well as the require-
ment to decrease the expensive communication in these networks, has created an interest in
utilizing Compressed Sensing. However, while Compressed Sensing is an efficient tool, it is
mainly designed to deal with intra-signal structures, which makes it less suitable for dealing with
multiple signals [19, 20, 3]. Due to this Duarte, Sanvotham, Baron, Wakin, and Baraniuk [30]
proposed the Distributed Compressed Sensing theory, which expands the theory of compressed
sensing to also cover inter-signal correlation structures, as well as enabling distributed encoding.
In their work they have presented a Joint Sparsity Model, that expands the notation of a sin-
gle signal being sparse in some basis, to the notation that an ensemble of signals being jointly
sparse [19]. The Joint Sparsity Model covers three different models, and has later been general-
ized to a more generic model known as the Mixed Support-Set Model [21]. Both of these models
have been argued to cover a wide variety of signals encounter by wireless sensor networks [19, 21].

Page 13 of 75

2.5.1 Signal Models

2.5.1.1 Joint Sparsity Model

The three different data models of the Joint Sparsity Model is termed JSM-1, JSM-2 and JSM-3,
and are defined as follows.

JSM-1 Builds on the assumption that the signals share a common support set, in a given
basis. Additionally each signal is assumed to have a unique innovation support set. Thus the
individual signals can mathematically be split in to two part.

xj = z + zj , j ∈ {1, 2, ..., J} (2.5.1)

With J being the number of correlated signals. Thus the jth signal xj is the combination of z

which represent the common support set, and zj representing the innovation support set of the
jth signal [19].
An examples of this is outdoor temperature measurements taken over a given period of time.
Here the common support set, is influences by global effects of sun, while the innovation support
set is influenced by more local effects such as shade [19].

JSM-2 Builds on the assumption that the signals have a shared support set, though with
different coefficients. Thus a mathematical representation is.

xj = Ψzj , j ∈ {1, 2, ..., J} (2.5.2)

Here Ψ is the basis for which the signal is sparse. Each zj have common support set, but different
coefficients [19].
An example of this is where multiple sensors measure a common sound source, though at different
locations introducing phase shift as well as different attenuation [19].

JSM-3 Is a later extension of JSM-1, where only the innovation support set are assumed sparse
[22]. Though no further interesting explanation and use have been found

2.5.1.2 Mixed Support-Set Model (MSM)

The more generalized signal model, Mixed Signal Model [21], is defined as

xj = z
(c)
j + z

(p)
j , j ∈ {1, 2, ..., J} (2.5.3)

Here each z
(c)
j has a common support set, though with different coefficients. Each z

(p)
j contains

the individual innovation support sets and coefficients [21].
The Mixed Support-Set Model is equivalent to JSM-1, when the coefficients of each z

(c)
j are the

same. The Model is equivalent to JSM-2 when z
(p)
j is the null vectors [21].

Page 14 of 75

3
MATCHING PURSUIT FOR SPARSE APPROXIMATION AND
COMPRESSIVE SENSING

A wide selection of Matching Pursuit based algorithms have been selected and these will be
presented in the following. Additionally, the algorithms will be analyzed in regards to computa-
tional and storage complexities.
The selected algorithms cover both forward and hybrid selection approaches, as well as an ex-
tension for handling multiple correlated signals.
In general the algorithms will be analyzed based on worst case scenarios, with the only assump-
tion on the inputs being s < n < m as well as the restricted isometry property being obeyed for
the measurement matrix. Additionally the analysis will be performed based on using the Moore-
Penrose pseudo inverse, for the signal estimation steps, though more computationally effective
approaches exists, such as maintaining a QR factorization, though which increases to storage
complexity [23].
The analysis will be performed with extra focus on implementation, as the idea behind the sum-
mary and analysis, is to understand the mechanics of the algorithm as well as being able to
implement them.

3.1 Forward Selection

3.1.1 Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit was introduced by Pati, Rezaiifar, and Krishnaprasad in 1993 [9].
It is a slight improvement of the original Matching Pursuit algorithm, which was introduced by
Mallet and Zhang in 1993 [24]. Due to this Matching Pursuit will only be included in relation
to how Orthogonal Matching Pursuit improves upon it.
Orthogonal Matching Pursuit follows the basic structure for Matching Pursuit based algorithms,
described in section 2.3.3. Algorithm 3.1.1 lists Orthogonal Matching Pursuit and will be de-
scribed and analyzed below.

As inputs Orthogonal Matching Pursuit takes; the measurement matrix Φ, measurement vector
y and the sparsity level s of the signal x, which is to be estimated. Initially, the algorithm
sets up an iteration counter k, a support set vector λ with a size equal to the sparsity s, an
estimation null vector x̂, of the original signal x, with length deduced from the row length of
the measurement matrix. Lastly, a residual vector r is created and set equal to y. The work of
the algorithm is performed inside a while loop, that runs for a number of iterations, equal to the
provided sparsity level s of the desired signal x. Initially, the iteration counter is incremented
(line 6). Then Orthogonal Matching Pursuit selects the single element of the measurement ma-
trix, which has the highest correlation with the current residual (line 7), based on a matched
filter ΦT (r)(k−1). This has computational complexity Ot(nm) as a matrix-vector multiplication,
and a space complexity of Os(1), when calculated for a column of ΦT at a time, as it then only
requires the index of the highest coefficient to be stored. This column index is then added to
the support set (line 8). This has both computational and space complexity O(1), as it requires
insertion in the support set, at the index equal to the iteration counter. Then the signal is

Page 15 of 75

estimated by solving a least squares problem of the form ||y−Φλx̂||2, using only the k columns
of Φ pointed out by the current support set (line 9). This has complexities Ot(mk +mk2 + k3)

from the matrix multiplication with mk2 being the dominating part and Os(1), as it assigns to
the already initialized x̂ vector. Lastly the residual is updated by subtracting the estimation
from the measured signal, with complexity Ot(nm) from the matrix-vector multiplication and
Os(1), as the residual vector is already allocated.
Summing the above analysis, Orthogonal Matching Pursuit has computation complexityOt(snm+

smk2). The storage complexity is only influenced by the initialization, though if implemented
using QR, this will increase.
With regards to reconstruction guarantees, the authors of [25] demonstrate theoretical that Or-
thogonal Matching Pursuit is able to reliably recover a s sparse signal m ≥ s log n random linear
measurements. Empirically they demonstrate Orthogonal Matching Pursuit can reconstruct sig-
nals from fever measurements for the noiseless case.

Algorithm 3.1.1 Orthogonal Matching Pursuit (OMP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← 0s×1 Ot(1) Os(s)
3: x̂(0) ← 0n×1 Ot(1) Os(n)
4: r(0) ← y Ot(1) Os(m)
5: while k ≤ s do Ot(s) Os(1)
6: k ← k + 1 Ot(1) Os(1)
7: ω(k) ← supp(ΦT r(k−1), 1) Ot(nm) Os(1)
8: λ(k) ← λ(k−1) ∪ ω(k) Ot(1) Os(1)
9: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(mk2) Os(1)

10: r(k) ← y − Φx̂(k) Ot(nm) Os(1)
11: end while
12: return x̂← x̂(k)

Ot(snm+ smk2) Os(n)

3.1.2 Stagewise Orthogonal Matching Pursuit (StOMP)

Stagewise Orthogonal Matching Pursuit was introduced by Donoho, Tsaig, Drori, and Starck in
2007 [10]. It is designed to be significantly faster than Orthogonal Matching Pursuit, by increas-
ing the number of selected indices each iteration and by running a fixed number of iterations,
much lower than required for Orthogonal Matching Pursuit.
Stagewise Orthogonal Matching Pursuit follows the basic structure for Greedy Pursuit algo-

Page 16 of 75

rithms, described in section 2.3.3. Algorithm 3.1.2 lists Stagewise Orthogonal Matching Pursuit
and it will be described and analyzed below.

Stagewise Orthogonal Matching Pursuit takes some different input parameters than Orthogonal
Matching Pursuit. It no longer takes the sparsity level s, making it more appealing for the case
of this being unknown. Instead, it takes a max iteration count S and a thresholding parameter
ts.
For the initialization, the final size of the support set is not as well known as for Orthogonal
Matching Pursuit, having a worst case of size n as all the indices could be selected.
As for Orthogonal Matching Pursuit, the work of the algorithm is performed within a loop, which
now runs for a predetermined number of iterations. The authors of [10], state that 10 should be
a decent choice, for estimating the real support set, for sufficiently sparse signals.
For the iterative work, Stagewise Orthogonal Matching Pursuit only utilizes a different strategy
for selecting indices. Stagewise Orthogonal Matching Pursuit still performs the selection based
on the matched filter. However, the indices of all the coefficients that are above a given threshold
are selected (line 7). This threshold is calculated based on the formal noise level σ2 = ||r||2/

√
(n)

which is multiplied by the threshold parameter ts, for which the authors [10] states that a value
between 2 ≤ ts ≤ 3, would in combination with 10 iterations, result in the true support set
for sufficiently sparse signals, with high probability. However, this could end up including all n
indices for arbitrary signals. This selecting strategy is inspired by Gaussian noise removal, in
digital communication known as Multiple-Access Interference, and is motivated by the desire to
reduce the false alarm rate and false discovery rate [10]. The selected indices are then merged
with the current estimate, which would require a merge of the two sets, with complexity Ot(n).
The signal estimation (line 9) is similar to that of Orthogonal Matching Pursuit, though due to
indeterminacy of the support set size, the computational complexity changes to Ot(n3), in the
worst case, where all indices are selected.
Summing the above analysis, Stagewise Orthogonal Matching Pursuit has computational com-
plexity Ot(Sn3). All of the memory allocation can be performed at initialization with a bound
of Os(n).
With regard to guaranteesn the authors state that for sufficiently sparse signals no more than
m indices would be chosen, with high probability. This reduces the complexity to Ot(Sm3).
Should only s indices be chosen the complexity becomes Ot(Smn + Smk2), which is less than
for Orthogonal Matching Pursuit given that S < s.

Page 17 of 75

Algorithm 3.1.2 Stagewise Orthogonal Matching Pursuit (StOMP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Number of iterations S to perform
• Threshold value ts

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← ∅ Ot(1) Os(1)
3: x̂(0) ← 0n×1 Ot(1) Os(n)
4: r(0) ← y Ot(1) Os(m)
5: while k < S and

∣∣∣∣r(k)∣∣∣∣
2
> ε do Ot(S) Os(1)

6: k ← k + 1 Ot(1) Os(1)
7: ω(k) ←

{
j :
∣∣∣[ΦT r(k−1)

]
j

∣∣∣ ≤ tsσs} Ot(nm) Os(n)
8: λ(k) ← λ(k−1) ∪ ω(k) Ot(n) Os(n)
9: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(n3) Os(1)

10: r(k) ← y − Φx̂(k) Ot(nm) Os(1)
11: end while
12: return x̂← x̂(k)

Ot(Sn3) Os(n)

3.1.3 Regularized Orthogonal Matching Pursuit (ROMP)

Regularized Orthogonal Matching Pursuit was introduced by Needell and Vershynin in 2009 [11,
26, 27]. It is designed to be faster and give stronger guarantees than Orthogonal Matching Pur-
suit.
Regularized Orthogonal Matching Pursuit follows the basic structure for Greedy Pursuit algo-
rithms, described in section 2.3.3. Algorithm 3.1.3 lists Regularized Orthogonal Matching Pursuit
and it will be described and analyzed below.

Regularized Orthogonal Matching Pursuit takes the same inputs as Orthogonal Matching Pur-
suit.
For the initialization, the end size is of the support set is unknown, and as for Stagewise Orthog-
onal Matching Pursuit would have a worst-case size n.
As for Orthogonal Matching Pursuit, the work of the algorithm is performed within a loop, which
runs for s iterations or until the residual is sufficiently low.
For the iterative work, Regularized Orthogonal Matching Pursuit changes the strategy for select-
ing indices. Regularized Orthogonal Matching Pursuit also performed the selection based on the
matched filter. However, the indices are selected based on a regularization step (line 9). This
can be done by calculating and storing the matched filter output (line 7). These coefficients are

Page 18 of 75

then sorted and the s highest in magnitude are selected (line 8). This selection is then split into
subsets, where the coefficients of a subset are within a factor two of each other (line 9). The
original indices of the subset with the highest energy are then selected. Though the article states
that it suffices to only consider consecutive subsets, making the complexity Ot(s). This could
select all indices for an arbitrary signal. These indices are then merged with previously found
ones (line 10). If the support set er kept sorted, this can be done with complexity Ot(n). The
signal estimation (line 11) is similar to Orthogonal Matching Pursuit, though due to worst-case
size of the support set the computational complexity increases to Ot(n3) Summing the above
analysis, Regularized Orthogonal Matching Pursuit has computational complexity Ot(sn3). All
of the memory allocations can be performed at initialization, though doe to regularization, it
requires more than Orthogonal Matching Pursuit.
With regards to guarantees, the article states the following theorems of interest.

Theorem 1 (Theorem 1.3 of [11]) (Exact sparse recovery via ROMP) Assume a measurement
matrix Φ satisfies the restricted isometry condition with parameters (2s, ε) for ε = 0.03/

√
log s

Let x be an s-sparse vector in Rn with measurements y = Φx. Then ROMP in at most s
iterations outputs a set I such that

supp(x) ⊂ I and |I| ≤ 2s (3.1.1)

Theorem 2 (Theorem 3.1 of [11]) (Iteration invariant of ROMP) Assume Φ satisfies the Re-
stricted Isometry Condition with parameters (2s, ε) for ε = 0.03/

√
log s. Let x 6= 0 be an s-sparse

vector with measurements y = Φx. Then at any iteration of ROMP, after the regularization step,
we have J0 6= ∅, J0 ∩ I = ∅ and

|J0 ∩ supp(x)| ≥ 1/2 |J0| (3.1.2)

Which states that if the signal is in fact s sparse, then at least half of the indices selected after
regularization are in the true support set. As well as the resulting support set will be at most
2s in size and contain the true support set. Assuming this holds the overall complexity changes
to Ot(smn+ms3).
The article[11] also states that Regularized Orthogonal Matching Pursuit should, with high
probability, be able to reconstruct signals when m ≥ s log n.

Page 19 of 75

Algorithm 3.1.3 Regularized Orthogonal Matching Pursuit (ROMP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← ∅ Ot(1) Os(1)
3: x̂(0) ← 0n×1 Ot(1) Os(n)
4: r(0) ← y Ot(1) Os(m)
5: while r ≥ ε and k < s do Ot(s) Os(1)
6: k ← k + 1 Ot(1) Os(1)
7: v(k) ← ΦT r(k−1) Ot(nm) Os(n)
8: ω(k) ← supp(v(k), s) Ot(n log n) Os(s)
9: ω

(k)
0 ← argmax∀i,j∈ω0:|v(i)|≤2|v(j)|||uω0 ||2 Ot(s) Os(s)

10: λ(k) ← λ(k−1) ∪ ω0
(k) Ot(n) Os(n)

11: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(n3) Os(1)
12: r(k) ← y −Φx̂(k) Ot(nm) Os(1)
13: end while

Ot(sn3) Os(n)

3.1.4 Generalized Orthogonal Matching Pursuit (gOMP)

Generalized Orthogonal Matching Pursuit was introduced by Wang and Shim in 2011 [12, 28].
It is designed to improve the recovery performance of Orthogonal Matching Pursuit, by increase
the indices selection rate, in a more straightforward way than Stagewise Orthogonal Matching
Pursuit or Regularized Orthogonal Matching Pursuit.
Generalized Orthogonal Matching Pursuit follows the basic structure for Greedy Pursuit algo-
rithms, described in section 2.3.3. Algorithm 3.1.4 lists Generalized Orthogonal Matching Pursuit
and it will be described and analyzed below.

Generalized Orthogonal Matching Pursuit takes the same inputs as Orthogonal Matching Pur-
suit, as well as a number S of indices to select each iteration.
For the initialization, Generalized Orthogonal Matching Pursuit follows the same structures as
Orthogonal Matching Pursuit, whereas in contrast to Stagewise Orthogonal Matching Pursuit
and Regularized Orthogonal Matching Pursuit, no more than s indices can be selected.
As for Orthogonal Matching Pursuit, the work of the algorithm is performed within a loop, which
now runs for a maximum of m/S iteration, to accommodate for the increase in index selection
and as long as the residual norm is above a certain limit.
For the iterative, work Generalized Orthogonal Matching Pursuit uses the matched filter to se-
lect indices, just like Orthogonal Matching Pursuit. Only now S indices are selected. Which

Page 20 of 75

can be done by sorting of the coefficient of the matched filter. The merging with previously
selected indices can be done with complexity Ot(s), given the indices are kept sorted. The signal
estimation () is similar to Orthogonal Matching Pursuit, though the complexity increases as m
columns can be selected
With regards to reconstruction guarantees, the authors [12, 28], states that Regularized Orthog-
onal Matching Pursuit provide stable reconstruction for all s sparse signal, given that Φ satisfy
the RIP with δmax{9,S+1} ≤ 1

8 , within max{s, 8sS } iterations. Their results then indicate that the
number of required measurements is m = O(s logns).

Algorithm 3.1.4 Generalized Orthogonal Matching Pursuit (gOMP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

• Number of indices for each selection S ≤ s

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← ∅ Ot(1) Os(1)
3: x̂(0) ← 0n×1 Ot(1) Os(n)
4: r(0) ← y Ot(1) Os(m)
5: while

∣∣∣∣r(k)∣∣∣∣
2
> ε and k < m

S do Ot(m/S) Os(1)
6: k ← k + 1 Ot(1) Os(1)
7: v(k) ← ΦT r(k−1) Ot(nm) Os(n)
8: ω(k) ← supp(v(k), S) Ot(n log n) Os(S)
9: λ(k) ← λ(k−1) ∪ ω(k) Ot(S) Os(m)

10: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(m3) Os(1)
11: r(k) ← y −Φx̂(k) Ot(nm) Os(1)
12: end while
13: return x̂← x̂(k)

Ot(nm2/S +m4/S) Os(n)

3.2 Hybrid Selection

3.2.1 Compressive Sampling Matching Pursuit (CoSaMP)

Compressive Sampling Matching Pursuit was introduced by Needell and Tropp in 2008 [13, 27]. It
is designed to deliver the same guarantees, as the convex optimization-based approaches, though
with more rigorous bound on computation and storage requirements.
Compressive Sampling Matching Pursuit follows the basic structure for Greedy Pursuit algo-
rithms, described in section 2.3.3, with pruning. Algorithm 3.2.1 lists Compressive Sampling
Matching Pursuit and it will be described and analyzed below.

Page 21 of 75

Compressive Sampling Matching Pursuit takes the same inputs as Orthogonal Matching Pur-
suit. For the initialization, it is similar to Orthogonal Matching Pursuit, though the size of the
support set will have a maximum size of 3s, due to the selection strategy. As for Orthogonal
Matching Pursuit, the work of the algorithm is performed within a loop, which runs until a
halting condition is met. For this work a halting condition that allows for s iterations or until
the residual is negligible is used.
For the iterative work, the selection of indices is based on a matched filter (line 7). The 2s high-
est coefficients are then selected (line 8). These indices are merged with the previous estimate
(line 9), which gives a set of at most 3s indices. Based on these 3s indices the signal is estimated
by least squre, as for Orthogonal Matching Pursuit (line 10). After the estimation pruning is
used to set all but the s highest coefficients to 0. Lastly the residual is updated (line 12).
Summing the above this gives complexities of Ot(snm+ms3) and Os(n)

With regards to guarantees, the authors state that Compressive Sampling Matching Pursuit
can reconstruct compressible signals when m = O(s log(n/s)). Moreover, they state that the
iterations required for reconstructing compressible signals is O(log s).

Algorithm 3.2.1 Compressive Sampling Matching Pursuit (CoSaMP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← 03s×1 Ot(1) Os(s)
3: x̂(0) ← 0n×1 Ot(1) Os(n)
4: r(0) ← y Ot(1) Os(m)
5: while Halting condition is false do Ot(s) Os(1)
6: k ← k + 1 Ot(1) Os(1)
7: v(k) ← ΦT r(k−1) Ot(nm) Os(n)
8: ω(k) ← supp(v(k), 2s) Ot(n log n) Os(s)
9: λ(k) ← supp(x̂k−1) ∪ ω(k) Ot(s) Os(s)

10: x̄← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(ms2) Os(1)
11: x̂(k) ← x̄S Ot(n) Os(1)
12: r(k) ← y −Φx̂(k) Ot(nm) Os(m)
13: end while
14: return x̂← x̂(k)

Ot(snm+ms3) Os(n)

Page 22 of 75

3.2.2 Subspace Pursuit (SP)

Subspace Pursuit was introduced by Wei Dai and Olgica Milenkovic in 2009 [14]. It is designed
to have low computational complexity, compared to Orthogonal Matching Pursuit, and provide
reconstruction guarantees of the same order as the convex optimization-based approaches.
Subspace Pursuit follows the basic structure for Greedy Pursuit algorithms, described in sec-
tion 2.3.3, with pruning. Algorithm 3.2.2 lists Subspace Pursuit and it will be described and
analyzed below.

Subspace Pursuit takes the same inputs as Orthogonal Matching Pursuit. For the initialization,
it is similar to Orthogonal Matching Pursuit, though the size of the support set will have a
maximum size of 2s, due to the selection strategy As for Orthogonal Matching Pursuit, the work
of the algorithm is performed within a loop, which runs for s iterations or until the residual stop
decreasing. For the iterative work, the selection of indices is based on a matched filter (line 8).
The s highest coefficients are selected (line 9). These indices are merged with the previous es-
timate (line 10), which gives a set of at most 2s indices. Based on these 2s indices the signal
is estimated by least squares (line 11). After the estimation pruning is used to set all but the s
highest coefficients to 0, followed by again another least square problem with the new support
set of size s (line 13). Lastly the residual is updated (line 14).
Summing the above this gives complexities of Ot(snm+ms3) and Os(n).

With regards to guarantees, the authors state that Subspace Pursuit is able to reconstruct signals
with a worst-case iteration bound of O(s), which reduces to O(log s) when the coefficients of
x decay according to a power law. Additionally, the authors state that reconstruction be be
performed when m = 2s.

Page 23 of 75

Algorithm 3.2.2 Subspace Pursuit (SP)
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

Output:

• An estimate x̂ ∈ Rn of the signal x

1: k ← 0 Ot(1) Os(1)
2: λ(0) ← supp(ΦT y, s) Ot(mn) Os(s)
3: x̂(0) ← argminu:supp(u)=λ(0) ||y −Φu||2 Ot(ms2) Os(n)
4: r(−1) ← y Ot(1) Os(m)
5: r(0) ← y − Φx̂(0) Ot(mn) Os(m)
6: while r(k) < r(k−1) and k < s do Ot(s) Os(1)
7: k ← k + 1 Ot(1) Os(1)
8: v(k) ← ΦT r(k−1) Ot(nm) Os(n)
9: ω(k) ← supp(v(k), s) Ot(n log n) Os(s)

10: λ(k) ← λ(k−1) ∪ ω(k) Ot(s) Os(1)
11: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(ms2) Os(1)
12: λ(k) ← supp(x̂(k), s) Ot(n) Os(1)
13: x̂(k) ← argminu:supp(u)=λ(k) ||y −Φu||2 Ot(ms2) Os(1)
14: r(k) ← y − Φx̂(k) Ot(nm) Os(1)
15: end while
16: return x̂← x̂(k)

Ot(snm+ms3) Os(n)

3.3 Joint Compressed Sensing Problems

From the interest of utilizing compressed sensing for joint sparse signals, extensions of the re-
construction algorithms have been designed. Dennis Sundman, Saikat Chatterjee and Mikael
Skoglund have modified Orthogonal Matching Pursuit and Subspace Pursuit [21] to tackle these
problems. The modifications are very similar, for which only the Subspace Pursuit version will
be included. This modification is relevant for distributed compressed sensing case.

3.3.1 Joint Subspace Pursuit (JSP)

Joint Subspace Pursuit was introduced by Sundman, Chatterjee and Skoglund in 2011 [21]. It
is designed to expand Subspace Pursuit, for the more general multiple sensor system setups.
JSP consists of two primary changes; a new outer layer is added to the algorithm, and the actual
algorithm now takes an initial support set.

The new outer layer, is iteratively calling a modified version of Subspace Pursuit, that can take
side information. Based on the individual results of the modified Subspace Pursuit, voting is

Page 24 of 75

used to deduct the common sparsity, which is assumed to be indices, pointed out by more than
one modified Subspace Pursuit run. The iteration stop criterion of Subspace Pursuit is again
used, however, it know considers the decrease of the sum of all the individual residuals.

Algorithm 3.3.1 JSP
Input:

• Measurement matrices {Φl}Ll=1 ∈ Rm×n

• Observation vectors {yl}Ll=1 ∈ Rm

• Sparsity level s(c) of the common part
• Sparsity levels {s(p)l }

L
l=1 of the private parts

Output:

• Estimates {x̂l}Ll=1 ∈ Rn of the signals {x}Ll=1

1: k ← 0 Ot(1) Os(1)
2: r(−1) ←∞ Ot(1) Os(m)
3: r(0) ←

∑L
l=1 yl Ot(mL) Os(m)

4: λ(0) ← ∅ Ot(1) Os(1)
5: while r(k) < r(k−1) and k < s do Ot(s) Os(1)
6: k ← k + 1 Ot(1) Os(1)
7: s(k) ← 0n×1 Ot(1) Os(n)
8: for ∀l ∈ {1, 2, ..., L} do Ot(L) Os(1)
9: (x̂

(k)
l , r

(k)
l)← modifiedSP(Φl, yl, s

(c) + s
(p)
l , λ(c)) Ot(snm+ms3) Os(n)

10: s(k) ← vote(s(k), supp(x̂
(k)
l)) Ot(s) Os(1)

11: end for
12: r(k) ←

∑L
l=1 r

(k)
l Ot(mL) Os(1)

13: λ(c) ← supp(s(k), s(c)) Ot(n) Os(1)
14: end while

Ot(s2nm+ms4) Os(n)

The modified Subspace Pursuit, only differs from Subspace Pursuit on two points. It take as
input a side information support set, assumed to be the common support set. The algorithm then
merge this support with its own initial estimate, before performing the initial signal estimate.
After this it runs like Subspace Pursuit until the residual stops decreasing.

Page 25 of 75

Algorithm 3.3.2 modified SP
Input:

• Measurement matrix Φ ∈ Rm×n

• Observation vector y ∈ Rm

• Sparsity level s of the ideal signal x ∈ Rn

• Initial support set λini

Output:

• An estimate x̂ ∈ Rn of the signal x

• Remaining residual r

1: l← 0 Ot(1) Os(1)
2: v(0) ← ΦT r(l−1) Ot(nm) Os(n)
3: λ(0) ← supp(v(0), s) Ot(nm) Os(s)
4: λ(0) ← λ(0) ∪ λini Ot(s) Os(1)
5: x̂(0) ← argminu:supp(u)=λ(0) ||y −Φu||2 Ot(ms2) Os(n)
6: r(0) ← y − Φx̂(0) Ot(nm) Os(m)
7: while r(l) < r(l−1) and k < s do Ot(s) Os(1)
8: l← l + 1 Ot(1) Os(1)
9: v(l) ← ΦT r(l−1) Ot(nm) Os(n)

10: ω(l) ← supp(v(l), s) Ot(n log n) Os(s)
11: λ(l) ← λ(l−1) ∪ ω(l) Ot(s) Os(1)
12: x̂(l) ← argminu:supp(u)=λ(l) ||y −Φu||2 Ot(ms2) Os(1)
13: λ(l) ← supp(x̂(l), s) Ot(n) Os(s)
14: x̂(l) ← argminu:supp(u)=λ(l) ||y −Φu||2 Ot(ms2) Os(1)
15: r(l) ← y − Φx̂(l) Ot(nm) Os(m)
16: end while

Ot(snm+ms3) Os(n)

Page 26 of 75

4
DISTRIBUTED COMPRESSED SENSING

In this section, some expansions to Compressed Sensing for use in distributed systems will be ...

4.1 Compressive Data Gathering (CDG)

Compressive Data Gathering is a method of applying compressed sensing to data gathering in
large-scale wireless sensor networks, introduced by Luo, Wu, Sun and Chen in 2009 [29].

The method is rooted in seeing the signal as distributed in space, rather than in time. Thus
multiple sensors are used in acquiring the signal and relaying it to a sink. This can be combined
with the use of a measurement matrix, by letting each sensor know a given column. A sensor
then multiplies its reading with each entry. The resulting vector must be added to a possible
incoming vector, and then forwarded. Then the sink receives the measurement vector, as if the
signal, had been multiplied by the measurement vector locally. [29]

Figure 4.1.1. Compressive Data Gathering way of compressing while forwarding through a chain of
nodes. Each note multiplies its own data with an assigned column of the measurement matrix, then this
is added to the possible incomming data from child notes and forward. When the data reaches the sink
this would have the same result as multiplying the entire data collection with the measurement matrix,
thus allowing the sink to reconstruct the signal. (Source: [29])

4.1.1 Application

4.1.1.1 Topology fit

From the description of CDG, it is well designed to fit onto a chain topology. From figure 4.1.1
this clearly reduces the overall traffic, as long as m � n, as well as load balancing as all nodes
have to transmit equal amounts of data.
It can be extended to fit onto a tree-topology, by letting intermediate nodes, know of their child
notes, and accumulate all their signals and add its own, before forwarding.
Generally, CDG requires the nodes to know of their neighbors, so some kind of subscribe/unsub-
scribe protocol would be needed.

Page 27 of 75

Figure 4.1.2. Simple tree structure

4.1.1.2 Examples

Ocean Temperature Data
The authors of [29] include a real-life example, involving temperature readings at different levels
of the ocean. They then show how this data is nearly sparse in the wavelet domain and how well
it can be reconstructed after compressed sensing.

Data center temperature
A more interesting example is looking at real-life temperature data from a data center. In this
case, when the data is plotted, it does not seem sparse in any intuitive basis. But by sorting
the data points, in ascending order, it becomes piece-wise smooth and thus sparse in the wavelet
domain. As the authors point out, this kind of temperature readings does not change violently,
which implies that new sensor reading, taken within a given time limit, will also be sparse in the
wavelet domain, when sorted in the same order.
This makes CDG applicable, as the sensors only do multiplication and addition in a “blind”
way, and when the reordering scheme as determined for a given interval, CDG can be applied
to all following measurements, as the sink only has to order the respective measurement matrix
columns in the same way. As the authors point out, this kind of reshuffling to obtain sparsity is
not possible in conventional ways.
This applies to a wide range of wireless sensor networks, where the detection of fluctuations in
data is the goal. A given system only needs to reestimate the recording with some intervals, as
a calibration.

Page 28 of 75

(a) Temperature readings sorted according to sen-
sor deployment structure. This inherently seems
extremely noise, thus not being sparse in any well
known basis. This implies that genral transform
coding strategies and distributed source coding can-
not be applied

(b) Temperature readings sorted according to tem-
perature values. This makes the readings piecewise
smooth, thus compressed sensing can be applied, as-
suming that the sorting order is known. The data
can then be reconstructed if the columns of the mea-
surement matrix is sorted, according to the deter-
mined sorting order of the temperature readings

Figure 4.1.3. Simulation of temperature readings at distributed notes, similar to the example of [29]

4.2 Distributed Parallel Pursuit (DIPP)

Distributed Parallel Pursuit was introduced by Dennis Sundman, Saikat Chatterjee and Mikael
Skoglund in 2013 [30, 31]. DIPP is based on Subspace pursuit, with added side-information.
Overall it consists of four parts, performed in iterations; Parallel Pursuit with Side Information,
Consensus and Expansion, which will all be discussed and analyzed more in depth later, and a
Transmit/Receive part, were currently estimated support sets are communicated between nodes,
as a rendezvous point.

DIPP starts out by evaluating its own measurement and estimate its support set (2), by using the
SIPP algorithm, without side information, which reduces it to Subspace pursuit. Then iteratively
improves upon the estimate. The first thing in the loop is an exchange of estimated support
sets, with neighboring nodes (5 and 6), as a rendezvous point. Then the consensus algorithm is
used on all the acquired support sets, to estimate the common support set (7). The estimated
common support set is then used along with the estimated signal to expand the support set to
include the innovation part (8). Lastly, SIPP is called, now with side information, consisting of
the estimated common support set.

Page 29 of 75

Algorithm 4.2.1 Distributed Parallel Pursuit (DIPP)
Input:

• Measurement matrix Φp ∈ Rm×n for the node
• Observation vector yp ∈ Rm for the node
• Sparsity level s of the ideal signal xp ∈ Rn

• Set Linp of incoming connections from other nodes
• Set Loutp of outgoing connections to other nodes

Output:

• An estimate x̂p ∈ Rn of the signal x

1: k ← 0

2: (x̂
(k)
p , λ̂

(k)

p , r
(k)
p)← SIPP(yp, Φp, s, ∅)

3: while Stopping criterion not met do
4: k ← k + 1

5: Transmit: λ̂
(k−1)
p to all nodes p ∈ Loutp

6: Receive: λ̂
(k)

q from all nodes q ∈ Linp
7: λ̂

(k)

p,c ← consensus({λ̂(k)

q }q∈Linp , λ̂
(k−1)
p , s)

8: λ̂
(k)

p,si ← expansion(λ̂
(k)

p,c , x̂
(k−1)
p , s)

9: (x̂
(k)
p , λ̂

(k)

p , r
(k)
p)← SIPP(yp, Φp, s, λ̂

(k)

p,si)

10: end while
11: return x̂← x̂p,k

4.2.1 Parallel Pursuit with Side Information (SIPP)

The SIPP algorithm is an extension of Subspace pursuit, able to also include side information,
as the common support set estimate. The biggest difference between SIPP and Joint Subspace
Pursuit is that SIPP incorporates the side information in the loop, whereas Joint Subspace pur-
suit only considers it at the initialization.

The algorithms execute much like Subspace Pursuit but add lines 11 and 12. The side informa-
tion support set is merged with the estimated support set each iteration (line 11). Then an extra
least squares step is taking (line 12) before pruning the signal to have the given support set size.

Page 30 of 75

Algorithm 4.2.2 Parallel Pursuit with Side Information (SIPP)
Input:

• Measurement matrix Φ ∈ Rm×n for the node
• Observation vector y ∈ Rm for the node
• Sparsity level s of the ideal signal x ∈ Rn

• Side information λ̂p,si, containing indexes from previous iterations

Output:

• An estimate x̂ ∈ Rn of the signal x

• λ̂ non-zeros indexes of x̂

• Remaining residual r

1: l← 0

2: r(0) ← y

3: λ̂
(0) ← 02s×1

4: x̂(0) ← ∅
5: while Stopping criterion not met do
6: l← l + 1

7: ω(l) ← supp(ΦT r(l−1), s)

8: λ̂
(l) ← λ̂

(l−1) ∪ ω(l)

9: x̄(l) ← argmin
u:supp(u)=λ̂

(l) ||y −Φu||2
10: ω(l) ← supp(x̄(l), s)

11: λ̂
(l) ← λ̂p,si ∪ ω(l)

12: x̄(l) ← argmin
u:supp(u)=λ̂

(l) ||y −Φu||2

13: λ̂
(l) ← supp(x̄(l), s) 1

14: x̂(l) ← argmin
u:supp(u)=λ̂

(l) ||y −Φu||2
15: r(l) ← y −Φx̄(l)

16: end while
17: return

4.2.2 Consensus

The consensus algorithm is responsible for taking the estimated support of the present node λ̂p
and neighboring nodes {λ̂q}q∈Linp , and estimate the common support set, with an upper limited
support set size s. This is done by voting. Initially, a zero vector, with length equal to the signal
is created (1), as the vote vector. First, the nodes own support set estimate is considered (2), the
voting is done by taking the voting vector and a support set, and increment the coefficients at
all the indices, indicated by the support set. Then the algorithm iterates over all the L incoming
nodes support set (3), and perform the same voting for them (4). Finally, the common support
set is formed, by selecting all the indices from the voting vector that is higher than or equal
to two, which indicates the index might be in the true support set. Should the number of se-
lected indices exceed the commin support set sizes, then it only selects the indices of the s highest
coefficients, as indices with more votes, have a higher probability of being in the true support set.

Page 31 of 75

Algorithm 4.2.3 consensus
Input:

• Nodes own support set λ̂p
• Neighbour nodes support sets {λ̂q}q∈Linp
• Support set size s

Output:

• Estimated common support set λ̂p,c

1: z← 0n×1
2: z← vote(z, λ̂p)
3: for each q ∈ Linp do
4: z← vote(z, λ̂q)
5: end for
6: return λ̂p,c s.t. (z(i) ≥ 2)∀i ∈ λ̂p,c and |λ̂p,c| ≤ sc

4.2.3 Expansion

The expansion algorithm is responsible for taking the common support set estimate λ̂p,c from
consensus, as well as the nodes, own signal estimate x̂p, and expend the common support set
to also cover the innovation part. This is done by initially setting the indices of the estimated
signal, pointed out by the common support set, equal to 0 (1). Then a number of indices, equal
to the difference between the estimated common support set size and total support set size, is
selected, based on the highest coefficients. Lastlyn the common and innovation support sets are
merged, and due to line 1, they would not have any shared elements.

Algorithm 4.2.4 expansion
Input:

• Estimated common support set λ̂p,c
• Estimated own signal x̂p
• Sparsity s

Output:

• λ̂p,si

1: (x̂p)λ̂p,c
← 0

2: λ̂p,i ← supp(x̂p, s− |λ̂p,c|)
3: λ̂p,si ← λ̂p,c ∪ λ̂p,i
4: return

Page 32 of 75

4.2.4 Application

The usability of DIPP will be discussed below. First, the overall topology fit of the algorithm
will be discussed followed by application examples.

4.2.4.1 Topology fit

Distributed Parallel Pursuit fits onto ring and mesh network topologies, in structured and un-
structured ways. The structured networks can be seen in figure 4.2.1, and have different degrees
of connectivity, with connectivity one being a ring. The unstructed networks are general mesh
networks as shown in figure 4.2.2
The most important part related to the topology is the connectivity, which might give a tradeoff
between convergence speed and communication need for each iteration. When increasing the
connectivity, more data will be sent between the nodes each iteration, thus more information is
available for the consensus step, causing the algorithm to converge faster. Thus an important
question in designing a network running DIPP would be what degree of connectivity would give
the least amount of total communication MessagesPrIteration ∗ Iterations.

(a) Connectivity of
one

(b) Connectivity of
two

(c) Full connectivity

Figure 4.2.1. Ring topologies, with different connectivity

Figure 4.2.2. General mesh topology

4.2.4.2 Examples

DIPP can be applied to any dsitributed setup, where individual notes has aquire data that is
correlated with the data of other notes. The true benefit of using DIPP is when the connection
between notes is inexpensive compared to communication to a sink. As the notes in collaboration
can estimate the support set, and then only send these to the far away sink. This is rather
similar to using transform coding on the notes, as the notes in collaboration performs a form of
compression on the data, and can achieve compression down to s rather than m.

Page 33 of 75

4.3 Common-Innovation Subspace Pursuit (CISP)

Common-Innovation Subspace Pursuit was introduced by Liu, Huang and Yao in 2019 [32].
At the basis CISP utilizes a Matching Pursuit algorithm to estimate the innovation supports
signals, however, the access to multiple joint signals is used to rapidly estimate the common
support set, without iteration. The contribution to the signals from the common support set is
then removed by projections, creating a smaller scale problem to be solved by the underlying
matching pursuit algorithm.

CISP takes all the signals {{ykj }
Kj

k=1}
J
j=1 and the related measurement matrices {{Φk

j }
Kj

k=1}
J
j=1,

of all the J clusters with sizes of Kj , as well as knowledge of the size of the common support set
sc and innovation support set si.
In CISP the measurements are seen as coming from different clusters, though this not strictly
necessary as it can be simulated. The algorithm starts out by averaging the measurement of
the different clusters and combining these averages as columns in a new matrix(1), this both
reduces noise and suppresses the innovation parts for the individual cluster. Then the a average
measurement matrix is formed by averaging over all the measurement matrices. The algorithm
then performs Eigen-value decomposition of the matrix formed by the averaged measurement
and select the Eigen-vectors related to the sc largest eigenvalues (3). These eigenvectors are
then used with the columns of the averaged measurement matrix, in order to obtain the common
support set, as the vectors in the averaged measurement matrix with the smallest cosine distance
to the eigenspace spanned by the selected eigenvectors. An iteration is then performed for
each individual measurement. Here the individual measurements and measurement matrices are
projected into a subspace, to remove the influence of the common subspace. A matching pursuit
algorithm is then performed on each of these projections in order to estimate the innovation part
of each measurement. This is followed by an estimation of the coefficient related to the common
support set part using the Moore-Penrose Pseudo inverse.

Page 34 of 75

Algorithm 4.3.1 Common-Innovation Subspace Pursuit (CISP)
Input:

• Measurment vectors {{ykj }
Kj

k=1}
J
j=1, from all the nodes, of the J cluster with sizes KJ

• Measurement matrices {{Φk
j }
Kj

k=1}
J
j=1, from all the nodes, of the J cluster with sizes KJ

• Common sparsity size sc
• Innovation sparsity size si

Output:

• {{x̂kj }
Kj

k=1}
J
j=1

1: Y ← [ȳ1, ȳ2, ..., ȳJ], where ȳj = 1
Kj

∑Kj

k=1 ykj

2: Φ̄← 1
Nnode

∑J
j=1

∑Kj

k=1 Φk
j

3: V← EVD(YYT)

4: C← 1− ||V
Tφj||
||φj ||

5: for j = 1, 2, ..., J do
6: for k = 1, 2, ...,Kj do

7: Pk
j ← I−

(
Φk
j

)
C

[(
Φk
j

)T
C

(
Φk
j

)
C

]−1 (
Φk
j

)T
C

8: ȳkj ← Pk
jy

k
j

9: Φ̄
k
j ← Pk

j

(
Φk
j

)
Cc

10:
(
x̂kj

)
Cc
← CoSaMP(Φ̄

k
j , ȳkj , si)

11:
(
x̂kj

)
C
←
(
Φk
j

)†
C

[
ykj −

(
Φk
j

)
Cc

(
x̂kj

)
Cc

]
12: end for
13: end for
14: return {{x̂kj }

Kj

k=1}
J
j=1

Page 35 of 75

Figure 4.3.1. Activity diagram for the CISP algorithm. The ECSP section is concerned with estimation
of the common support set, and the PISP section is concerned with estimating the innovation support
sets. In the ECSP part, the measurements are divided into clusters, and within the clusters the average
measurement is calculated. ECSP also average all the measurement matrices. These averages is then
used in an eigen values decomposition. The common support set is then estimated based on the cosine
distances of the columns of the averaged measurement matrix and the eigen vectors assoicated with
the with the highest eigenvalues. Based on the common support set estimate of ECSP, PISP performs
projection of the measurements in order to remove the contributions of the common support set. These
projection are then used for estimating the innovation support set uisng CoSaMP. Finally the estiamted
innovation support sets are combined with the common support set, as the final result.

As can be seen in figure 4.3.1, the algorithm can be seen as two part.

4.3.1 EVD based Common Subspace Pursuit (ECSP)

The eigenvalue decomposition based Common Subspace Pursuit is the part that is concerned
with estimating the common support set, based on eigenanalysis of the covariance matrix of the
averaged measurements. Line 1-4 of algorithm 4.3.1, the part before the for loops.

4.3.2 Projection based Innovation Subspace Pursuit (PISP)

The Projection based Innovation Subspace Pursuit is the part that is concerned with estimating
the innovation support set, based on projections of the measurement and measurement matrix,
which aims at removing the influence of the common part. Line 5-13 of the algorithm 4.3.1, the
part within the for loops.

4.3.3 Application

The usability of CISP will be discussed below. First, the overall topology fit of the algorithm
will be discussed followed by application examples.
An important factor in the usage of CISP is that two measurement matrices are needed at each
node. A common part, that all nodes know of, and an innovation part that is unique to each
node. The nodes then add these two matrices together and use this as the measurement matrix.

4.3.3.1 Topology fit

CISP is designed to be applicable to a star-of-stars topology. For these kinds of topologies that
different parts of the algorithms can be distributed to different parts of the networks, as will be
discussed below. The fact that CISP is applicable to a star-of-stars topologies, makes it highly

Page 36 of 75

scaleable compared to DIPP, where propagation of support set can increase the convergence
time, as propagating the support set estimation between notes that cannot reach each is other
might increase iterations and thus make the algorithm less effective.

Figure 4.3.2. Star-of-stars topology. Colorless notes are sensors, blue notes are cluster headers and the
red note is the sink

The structure of the algorithm allows for different distribution of the different parts, as stated
above. The methods mentioned in the article [32], puts the cluster measurements averaging on
the cluster heads, which sends these averages to the sink, which then perform the eigenanalysis
to estimate the common support set. The common support set estimate is then sent back to
each node, which then individually performs the PISP part to estimate their own innovation
support set, which is then send back to the sink. Other alternative setups could be to send all
the measurements to the sink to then perform the entire algorithm, or the PISP parts could be
performed on the cluster headers.

Due to the flexibility of distributing parts of the algorithm, CISP is applicable to a wide range
of networks. The network does not necessarily have to be following a star-of-stars topology, as
the sink is free to take incoming measurements and set them up as if they were coming from
different clusters, in order to use the algorithm.

Page 37 of 75

5
NUMERICAL EXPERIMENTS AND RESULTS

In this section the performed experiments will explained, as well as their purpose. Additionally
the results will be shown and explained.
The experiments will be using new implementation of the algorithms, which have been writen
and tested based on the knowledge gained through the analysis in chapter 3 and 4.

As a general way of illustrating the results phase diagrams will be used [10, 32]. Phase diagrams
are 2D graphics that allows the results to be discussed as regions based on selected coordinate
measurements. This allows for a more overall result discussion as well as providing an efficient
way of comparing different results. As the mostly used example phase diagrams will be presented,
with coordinates measuring relative sparsity and compression rate. These graphics will be used
for plotting both estimated reconstruction accuracy as well as iterations used for reconstruction.
Thus reconstruction can be discussed across the algorithms in terms of region of reconstruction.
As well as determined how many iteration a given algorithm requires, when in the region where
reconstruction is possible.

5.1 Matching Pursuit Experiments

The following tests are ment to verify the workings of the written implementation of the Matching
Pursuit algorithms. Additionally, the results will be used to argument further limitations on the
algorithms, than those of chapter 3 in order to improve upon the complexities.
The implementations used can be found in appendix A, and are all using the Moore-Penrose
pseudo-inverse, which was found sufficient as the results of interest will be correct reconstruction
and iteration taken.

5.1.1 Data Dimensions and Reconstruction

Protocol

Page 38 of 75

Purpose Verify the working of the implemented algorithms, as well as evaluate the
reconstruction performance, with respect to different relation between
m and n and between m and s.

Data Three test data setups, all with i.i.d. sampled support set from U(1, n).
Setup 1) Coefficients i.i.d. sampled from N (0, 1). Setup 2) Flat signals,
i.e. coefficients set to one. Setup 3) like 1, but with added white gaussian
noise, with an SNR of 80.

Success criterion Exact reconstruction. Support set of estimate is the same as that of the
generated signal

Algorithms OMP, StOMP, ROMP, CoSaMP, SP and gOMP.
Notes In order to evaluate and compare the algorithms phase diagrams will be

used, showing regions in which the algorithms can reconstruct correctly
with high probability, with coordinates measure relative sparsity and
compression rate. For all of the performed testes n = 400, and for every
value combination of s and m 100 trials was performed and averaged.

Table 5.1.1. Test protocol: Data dimensions and reconstruction

5.1.1.1 Results

In the following the results for the indivdual algorithms will be shown and described.

Page 39 of 75

Orthogonal Matching Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.1. Performance of OMP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 40 of 75

The results of figure 5.1.1 indicates that for signals with gaussian coefficients Orthogonal Match-
ing Pursuit can reconstruct the signals when the relation between s and m is below 0, 3, and
below 0, 15 for flat sigals. When the gaussian signal is contaminated with noise, the phase dia-
gram shows equal regions as the noiseless case. This indicates a bound of m = O(s log n), which
would be a horizontal line in the phase diagrams.
Iteration wise the results follow the expected trend of s iterations required.

Page 41 of 75

Stagewise Orthogonal Matching Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.2. Performance of StOMP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 42 of 75

The results of figure 5.1.2 indicates that for signals with gaussian coefficients Stagewise Orthogo-
nal Matching Pursuit can reconstruct the signals when the relation between s andm is below 0, 3,
and below 0, 15 for flat sigals. This is very similar to Orthogonal Matching Pursuit, though with
much sharper cutoff regions. When the gaussian signal is contaminated with noise, the phase
diagram shows that Stagewise Orthogonal Matching Pursuit is completely unable to reconstruct
the signal. However as can be seen on the results in figure 5.1.3, this can be greatly improved
by adding a pruning step at the end, like is used for Compressive Sampling Matching Pursuit
and Subspace Pursuit. As for Orthogonal Matching Pursuit, this is similar to the result of the
noiseless case, though with some degradation is accuracy, though especially when the relation
between m and n is above 0, 5. This change in accuracy, when adding pruning, is found to be
due to overestimation in the noisy case.
Iteration wise the results shows that Stagewise Orthogonal Matching Pursuit is upper bound
by the 10 allowed iterations. For the two cases without noise, Stagewise Orthogonal Matching
Pursuit is able to reconstruction the result in less iteration.
The phase diagram in figure 5.1.4, shows the number of selected indices for different s and m

value pairs, in the noisy case(3). It shows how the number of selected indices, in the region of
which reconstruction was possible when adding a pruning step, is still very close to s. Addition-
ally it shows that for the region where reconstruction was not possible, it does not get close to
the real support set size.

(a) Reconstruction accuracy for case 3, with added
pruning step

(b) Iterations for case 3, with added pruning step

Figure 5.1.3. StOMP, measured by reconstruction accuracy and iterations taken. For case 3, noisy
measurements, and with adding pruning step at the end.

Page 43 of 75

Figure 5.1.4. Number of indices selected in total at each s and m value pair.

Page 44 of 75

Regularized Orthogonal Matching Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.5. Performance of ROMP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 45 of 75

The results in figure 5.1.5 shows that when the relation between m and n decreses, so does the
relation between s and m for which reconstruction is possible. This indicates that Regularized
Orthogonal Matching Pursuit is can deal with much higher sparsity levels, when little compres-
sion is used. When dealing with flat signals, rather than gaussian, the cutt-off region is slightly
lower for all values of m. As for Stagewise Orthogonal Matching Pursuit the result shows that
when the gaussian signal is contaminated with noise, Regularized Orthogonal Matching Pursuit
is unable to perform reconstruction, despite when the sparsity level is 1, and when no compres-
sion is used, and the signal is not sparse at all. Again as for Stagewise Orthogonal Matching
Pursuit, the addition of a pruning step improves upon the result (figure 5.1.6), however not even
nearly as much as for Stagewise Orthogonal Matching Pursuit. Figure figure 5.1.7 shows the
ammount of selected indices for the noisy case. As for Stagewise Orthogonal Matching Pursuit,
when in the region where reconstruction is possible, when using a pruning step, the overestimate
size is limited. However, when not in the region of reconstruction the result seems to contain m
significant coefficients, instead of only s.
When looking a the amount of selected indices, it is bound by O(s) in the regions where re-
construction is possible, thus justifying the stated computational complexity of Ot(smn+ms3),
atleast for reconstructable signals.

(a) Reconstruction accuracy for case 3, with added
pruning step

(b) Iterations for case 3, with added pruning step

Figure 5.1.6. ROMP, measured by reconstruction accuracy and iterations taken. For case 3, noisy
measurements, and with adding pruning step at the end.

Page 46 of 75

Figure 5.1.7. Number of indices selected in total at each s and m value pair.

Page 47 of 75

Generalized Orthogonal Matching Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.8. Performance of gOMP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 48 of 75

The results in figure 5.1.8 shows performance equal to the of Regularized Orthogonal Matching
Pursuit, with higher relation between m and n allowing for reconstruction of higher relations
between s and m. As for both Regularized Orthogonal Matching Pursuit and Stagewise Orthog-
onal Matching Pursuit, Generalized Orthogonal Matching Pursuit seems unable to reconstruct
gaussian signals contaminated with noise. Adding a pruning step again improves upon this (fig-
ure 5.1.9), allowing for almost similar reconstruction region, as for the noiseless case, when the
relation between m and n is less than 0, 5. Figure 5.1.10 shows number of estimated indecies for
different levels of sparsity and compression when dealing with noisy signals. The number over
wrongly estimated indices in the region for which reconstruction was possible seems to be bound
O(s) thus reducing the upper limit of iterations to a bound of O(s/S) should suffice. As well as
assuming a computation complexity of O(ms2) for the signal estimation step.

(a) Reconstruction accuracy for case 3, with added
pruning step

(b) Iterations for case 3, with added pruning step

Figure 5.1.9. gOMP, measured by reconstruction accuracy and iterations taken. For case 3, noisy
measurements, and with adding pruning step at the end.

Figure 5.1.10. Number of indices selected in total at each s and m value pair.

Page 49 of 75

Compressive Sampling Matching Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.11. Performance of CoSaMP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 50 of 75

The results of figure 5.1.11 shows how Compressive Sampling Matching Pursuit performes recon-
struction of the stated relation between s and m of 0, 5 when little compression is used, however,
when compression is increased the relation between s and m for which reconstruction is possi-
ble, also decreases. When working on flat signals, the region of which Compressive Sampling
Matching Pursuit can perform reconstruction, decreses much less, than what was the case for the
forward selection algorithms. The region of reconstruction for Compressive Sampling Matching
Pursuit seems to be equal for the noisy and noiseless guassian case, with even better accuracy
for higher relation between m and n when the signal is noisy.
Iteration wise, Compressive Sampling Matching Pursuit takes very few iterations when in the
region where compression is possible, however it uses all the allowed iterations when in the region
where reconstruction is not possible. This indicates that a lower bound on allowable iteration
would be wise. Moreover, the results indicate that an upper limit of iteration bound by O(log s)

would still have the same region of reconstruction, while greately reducing the iteration used
when reconstruction is not possible. This would change the overall computational complexity of
the algorithm to Ot(nm log s+ms2 log s).

Page 51 of 75

Subspace Pursuit

(a) Reconstruction accuracy for case 1 (b) Iterations for case 1

(c) Reconstruction accuracy for case 2 (d) Iterations for case 2

(e) Reconstruction accuracy for case 3 (f) Iterations for case 3

Figure 5.1.12. Performance of SP, illustrated through phase diagrams with coordinates of relative
sparsity and compression rate, the plots uses either estimated reconstruction accuracy or iterations taken
to form different regions.. Setup 1 (a and b) is signals with i.i.d. sampled support set from U(1, n) and
coefficients i.i.d. sampled from N (0, 1). Setup 2 (c and d) is signals with i.i.d. sampled support set
from U(1, n) and coefficients set to one. Setup 3 (e and f) is signals with i.i.d. sampled support set from
U(1, n) and coefficients i.i.d. sampled from N (0, 1) and with added white noise gaussian noise with an
SNR of 80.

Page 52 of 75

The results of figure figure 5.1.12 indicates that Subspace Pursuit is able to perform reconstruc-
tion of signals with a relation between s and m of up to the stated 0, 5 when little compression
is used. However, as the compression rate is increased, the relation between s and m for which
reconstruction is possible decreases. Subspace Pursuit shows very similar reconstruction regions
for all of the three signals.
Iteration wise Subspace Pursuit uses a few iteration when in the region where reconstruction
is possible, indicating that a lower bound on iteration could be used. The iteration plots also
shows that when in the region where reconstruction is not possible, Subspace Pursuit returns
with even fewer iteration. The results are generally very similar to those of Compressive Sam-
pling Matchign Pursuit, when in the region where reconstruction is possible, thus also alowing
an upper iteration bound of O(log s), which inturn also changes the computation complexity to
Ot(nm log s+ms2 log s).

Page 53 of 75

5.1.2 Reconstruction Error

Protocol

Purpose Investigate reconstruction accuracy for different degree of compression
and sparsity level, using a less strict metric than in section 5.1.1. This
will indicate if the algorithms could give fair approximation above the
region of reconstruction found in section 5.1.1

Data Test data, with i.i.d. sampled index from U(1, N), coefficients i.i.d.
sampled from N (0, 1), and with white gaussian noise added to the mea-
surement, with an SNR of 80

Success criterion Relative error of reconstruction below 1
Algorithms SP
Notes As a performance metric relative error of reconstruction (RER) will be

used, inspired from [32]. RER is defined as: RER = ||x−x̂||2
||x||2 , which for

perfect reconstruction would be 0, and for fair approximation, be below
1. For the test n = 400, and for every value combination of s and m

100 trials was performed and averaged

Table 5.1.2. Test protocol: Reconstruction Error

5.1.2.1 Results

When comparing the result shown in figure 5.1.13 with that of figure 5.1.12e, which is for equiv-
alent signals, it seems like the cutoff between the regions of success and failure, is as sharp as
was found in section 5.1.1. Trials using the other matching pursuit algorithms, seems to give
similar results.

Figure 5.1.13. Phase plot, showing relative error of reconstruct: RER = ||x−x̂||2
||x||2 , for different degree

of compression and sparsity levels, using SP. Simulated measurements have a fixed size of n = 400

5.2 Distributed Compressed Sensing Experiments

The following tests focus on ...

Page 54 of 75

5.2.1 Obscure Sparsity

Protocol

Purpose Illustrate the usability of Compressed Sensing in distributed setup, when
the signals are extremely noise like. In this case transform coding and
distributed source coding are not applicable. Moreover, the test illus-
trates how the use of compressed sensing, allows for event detection,
which would not be possible using simple data aggregation. Addition-
ally, this test illustrates how reconstruction is performed when the signal
used is sparse in a transform domain, thus introducing the need for a
transform basis..

Data Signals formed from i.i.d values from N (30, 10), to simulate temperature
readings similar to those of [29].

Success criterion Reconstruction and events detected
Method Compressive Data Gathering
Notes

Table 5.2.1. Test protocol: Obscure Sparsity

5.2.1.1 Results

Figure 5.2.1a shows the simulated temperature readings, which have a much noiselike structure,
and is thus not sparse in any known transfer domain. However when the readings are sorted
by magnitude in figure 5.2.1b, they form a piecewise smooth plot, which is then shown to be
compressible in the wavelet domain figure 5.2.1c, by having only a few large coefficients.

Page 55 of 75

(a) Simulated temperature readings, sorted simmi-
lar to the deployment structure of the sensor in [20]

(b) Simulated temperature readings, sorted with
respect temperature magnitudes

(c) Haar wavelet transform of the simulated tem-
perature readings sorted with respect to tempera-
ture magnitudes. The transform, clearly only con-
sist of a few large coefficients, making compression
possible

Figure 5.2.1. Original signal, when sorted differently, as well as representation in a wavelet domain

To illustrate the compressed sensing is applicable to the original unsorted signal in figure 5.2.1a,
the following test is performed. The original signal is compressed using a measurement matrix,
with i.i.d. entries from N (0, 1) and with a size 256 × 1024. The resulting measurement vector
is then reconstructed using Subspace Pursuit, with sparsity of 30. For the reconstruction the
measurement matrix initially has its columns sorted in the same way the original signal was
sorted to make it piecewise smooth, it is then combined with a transposed Haar basis matrix.
The result is then multiplied by the Haar basis matrix, to transform it back into the space
domain. Lastly the columns are resorted, using the same sorting pattern as originally used, to
recreate the signal. The result is shown in figure 5.2.2 which have the very similar noise structure
as the original signal.

Page 56 of 75

Figure 5.2.2. Reconstruction result, after having simulated compressed sensing on the signal of fig-
ure 5.2.1a to obtain a measurement. The reconstruction has been performed by rearranging the columns
of the measurement matrix, in the same way the readings was sorted in figure 5.2.1b, this rearranged
measurement matrix is then multiplied by a Haar basis, and the product is used in Subspace Pursuit with
the measurement. After the reconstruction the signal as been rearranged again, in reverse order of the
sorting used in figure 5.2.1b. When comparing this result with figure 5.2.1a, similar structes are clearly
seen in the apperently noise signal.

To illustrate the usefulness of the above followed approach, new readings are simulated by adding
a vector for i.i.d values fromN (1/2, 1/10) to the original signal to simulate temperature increases.
Additionally a node is randomly selected and has it reading set to zero, in order to simulate a node
loss. As a node loss will amount to the node not giving any contribution to the measurement
vector. These new readings are then compressed and reconstructed, just like in the example
above. The new signals and its reconstructed counter part is shown in figure 5.2.3. Which again
has very similar structures, and more importantly the location of zero reading is perserved.

(a) Originally modified signal
(b) Result of simulating compressed sensing on the
originally modifed signal, and reconstruction it us-
ing the same approach for figure 5.2.2

Figure 5.2.3. The signal of figure 5.2.1a, modified by adding a vector i.i.d drawn from N (1/2, 1/10)

to simulate an over all temperature increase, as well as simulating the event of a node loss, by setting a
reading to 0, thus it want have an impact on the compressed sensing operation.

This shows how the location of the node loss is preserved, as a reading of 0. In figure 5.2.4 the
reconstructed signal in figure 5.2.3b is subtracted from the original readings 5.2.1a, and it shows

Page 57 of 75

how the selected node, has a much larger difference magnitude then the readings from the rest
of the nodes.

Figure 5.2.4. Difference of the signal in figure 5.2.1a and figure 5.2.3b. The spike indicates the location
simulated note failure

Page 58 of 75

5.2.2 Multiple Correlated Signals

Protocol

Purpose Investigate the performance of reconstruction algorithms considering
multiple correlated signals.

Data Test data, with i.i.d. sampled support set from U(1, n) and coefficients
drawn fromN (0, 1) and white gaussian noise added to the measurement,
with an SNR of 80.

Success criterion The amount of individual signals, being reconstructed with the exact
support set of det original signals.

Algorithms JointSP and DIPP with different degree of connectivity
Notes For all of the performed testes n = 400, and for every value combina-

tion of s and m 10 trials was performed and averaged, for each run 10
correlated signals was used.

Table 5.2.2. Test protocol: Multiple Correlated Signals

Page 59 of 75

5.2.2.1 Results

(a) Reconstruction accuracy for jointSP (b) Iterations for jointSP

(c) Reconstruction accuracy DIPP, con-
ncetivity 1

(d) Iterations for DIPP, connectivity 1

(e) Reconstruction accuracy for DIPP
connectivity 2

(f) Iterations for DIPP, connectivity 2

(g) Reconstruction accuracy for DIPP full
connectivity

(h) Iterations for DIPP, full connectivity

Figure 5.2.5. Result for test of JSP and DIPP on Test data, with i.i.d. sampled support set from
U(1,n) and coefficients drawn from N (0, 1) and white gaussian noise added to the measurement, with an
SNR of 80.

Page 60 of 75

The phase plots for reconstruction shown in figure 5.2.5, show very similar results. This indi-
cates that when concerned with reconstruction, whether Joint Subspace Pursuit or Distributed
Parallel Pursuit is used does not make a difference. Even running Distributed Parallel Pursuit
with different degree of connectivity does not make a clear difference in reconstruction. When
looking at the iteration plots in figure 5.2.5, the only noticeable difference, when in the region
where reconstruction is possible is that Joint Subspace Pursuit seems to use slightly more itera-
tions than Distributed Parallel Pursuit. Moreover, the regions where construction is possible, is
similar to those found by using Subspace Pursuit, which is also the underlying Matching Pursuit
algorithm for both Joint Subspace Pursuit and Distributed Parallel Pursuit. Thus no significant
improvement is found when considering multiple correlated signals.

5.2.3 CISP Performance Verification

Protocol

Purpose Verify the performance of the CISP algorithms is as stated in [32]
Data Simulated data, following the mixed support set model
Success criterion Results comparable to those of [32].
Algorithms CISP
Notes As a performance metric the article [32], uses relative error of reconstruc-

tion (RER) defined as RER = ||x−x̂||2
||x||2 , which for perfect reconstruction

would be 0, and for fair approximation, be below 1

Table 5.2.3. Test protocol: CISP Performance Verification

5.2.3.1 Results

The results of figure 5.2.6, figure 5.2.7 and figure 5.2.8 are all nearly identical to those of those
found in [32]. Though the results in figure 5.2.6 and figure 5.2.7, shows slightly better performence
than those from [32], where as the result in figure 5.2.8 seems slightly worse.
Performance results for reconstruction (noiseless)

(a) Test results, averaged over 100 trials (b) Article results ([32] figure 6a)

Figure 5.2.6. Verification of the result in [32] for reconstruction of noiseless signals. The test sets
n = 1000, sc = 30, si = 10 and the private part of measurement matrix having variance of only 0, 1

Page 61 of 75

Performance results for reconstruction (noisy)

(a) Test results, averaged over 100 trials (b) Article results ([32] figure 8a)

Figure 5.2.7. Verification of the result in [32] for reconstruction of noisy signals. The test sets n = 1000,
sc = 30, si = 10 and the private part of measurement matrix having variance of only 0, 1

Performance results for different sparsity

(a) Test results, averaged over 100 trials
(b) Article results ([32] figure 4)

Figure 5.2.8. Verification of the phase diagram result in [32]. The test sets n = 200, sc = 0, 8s,
si = 0, 2s, with number of clusters equal sc and the private part of measurement matrix having variance
of only 0, 1

5.2.4 Unknown Common Support Set Size

Protocol

Page 62 of 75

Purpose Investigate the claim in [32], that CISP can estimate the common sup-
port set, when the size is unknown, based on the eigenvalues.

Data Simulated data, following the mixed support set model.
Success criterion Size of the common support set being clear from eigenvalues of the

covariance matrix used in CISP.
Algorithms CISP
Notes A general cluster size of 4 will be used, based on the analysis [32]. For

each test 50 trials is run, the the averaged eigenvalues are plotted at
well as the max and min values.

Table 5.2.4. Test protocol: Unknowm Common Support Set Size

5.2.4.1 Results

From figure 5.2.9 it seems like perfect estimation of the common support set size is possible
using Common-Innovation Subspace Pursuit, by looking at the number of eigenvalues that are
significantly different from zero. However the number of clusters simulated for this result is equal
to the size of the total support set. Though when the number of clusters is below the size of the
total support set, only a number of eigevalues equal the number of cluster is clearly above zero,
as shown in figure 5.2.10. On the other hand when the number of clusters is higher than the size
of the support set size, a number of eigenvalues equal to the number of clusters is clearly above
zero, as shown in figure 5.2.11.
Thus in order to estimate the size of the common support set, based on the eigenvalue decompos-
tion performed by the Common-Innovation Subspace Pursuit algorithm, the number of cluster
must be at least equal to the total support set size, though more thorough analysis would be
required

Figure 5.2.9. Eigenvalue decay, when sc = 0, 8s. Number of clusters equal s with 4 nodes in each
cluster, n = 1000 and m = 100

Page 63 of 75

Figure 5.2.10. Eigenvalue decay, when sc = 0, 8s. Number of clusters is 5 with 4 nodes in each cluster,
n = 1000 and m = 100

Figure 5.2.11. Eigenvalue decay, when sc = 0, 8s. Number of clusters is 30 with 4 nodes in each cluster,
n = 1000 and m = 100

Page 64 of 75

6
DISCUSSION

6.1 Measurement Matrix

The measurement matrix is responsible for performing a linear dimensionality reduction during
the sampling, resulting in a smaller number of samples. In order for later reconstruction to be
possible, the measurement matrix must preserve the information of the signal in the compressed
representation. The signal information is preserved when the measurement matrix obeys the
restricted isometry property, which ensures an isometric dimensionality mapping of sparse and
compressible signals. Besides this, the measurement matrix must also be incoherent with the
sparsity basis. Verifying whether the restricted isometric property is obeyed for a given matrix,
requires that all

(
n
s

)
possible combinations of the matrix are linearly independent [2]. However,

both the restricted isometry property and the incoherence are fulfilled with high probability, by
matrices formed with i.i.d drawn coefficients from a normal distribution of N (0, 1

m) [2]. More
specifically such randomly drawn sensing matrix satisfy the restricted isometry property, in rela-
tion to s sparse signals when m > cs log n

s , with c being a small constant. Thus a reconstruction
of s sparse signal with length n would be possible from only m > cs log n

s measurements [2, 6].

6.2 Matching Pursuit

Based on the analysis of chapter 3 and experiments results in section 5.1.1 the following (ta-
ble 6.2.1), contains the current complexity estimates.

Algorithm Time complexity Space Complexity
OMP snm+ smk2 n

StOMP Snm+ Sms2 n

ROMP snm+ms3 n

gOMP snm/S +ms3/S n

CoSaMP nm log s+ms2 log s n

SP nm log s+ms2 log s n

Table 6.2.1. Current complexity results of matching pursuit algorithms, based on the analysis of
chapter 3 and numerical results of section 5.1.1

For the work of this thesis the Matching Pursuit based algorithms have been subdivided into
the categories forward and hybrid selection, due to the selection strategies highly resembling the
forward and hybrid subset selection in linear regression [18].
Moreover, as a general performance metric used to test the algorithm implementations, phase
diagrams were found effective for the experiments. The phase diagrams are 2D graphics with
coordinates measuring the relative sparsity level as well as the compression rate [10]. This
allows for discussing regions within which reconstruction is possible, with relative sparsity and
compression rate more generally determined.

Page 65 of 75

6.2.1 Forward Selection

The forward selection algorithms try to estimate one or as many correct indices of the support
set in each iteration.

Orthogonal Matching Pursuit selects a single index in each iteration, this index is found by
applying a matched filter. Then in each iteration, the signal of interest is estimated using the
selected indices. Based on this estimation a residual is updated by recompressing the estimate
using the measurement matrix and subtracting the result from the measurement vector. This
fairly removes most of the contribution of the currently estimated support set from the mea-
surement, allowing the following iteration to better estimate the next index. This single step
strategy forces the algorithm to run for a number of iterations equal to sparsity.
The rest of the forward selection algorithms considered, aims at decreasing the required number
of iteration by estimating more of the support set in each iteration.

Stagewise Orthogonal Matching Pursuit select multiple indices of the support set each iteration
by taking the indices of the matched filter coefficient that exceeds a given threshold. This thresh-
old is calculated based on formal noise levels. This selection strategy seems to give a slightly
better reconstruction result than the single step strategy of Orthogonal Matching Pursuit while
running for significantly fewer iterations. Though, when the signal is contaminated with noise,
a pruning step was found a necessity, as Stagewise Orthogonal Matching Pursuit, otherwise,
overestimate the signal, resulting in too many indices selected for the support set.

Regularized Orthogonal Matching Pursuit takes a different approach to the indices selection
based on regularization. Initially Regularized Orthogonal Matching Pursuit selects the indices
of the s highest coefficients of the matched filter. These indices are then split into consecutive
subsets, where the related coefficients from the matched filter, are all within a factor two of
each other. The subset with the maximal energy, based on the `2 norm is selected as the new
indices. It was observed that this operation could be reduced to picking the first subset, which
would increase the region of reconstruction, at the cost of a few more iterations. Just as for
Stagewise Orthogonal Matching Pursuit, a pruning step at the end was found necessary when
the signal was contaminated with noise, as Regularized Orthogonal Matching Pursuit, also will
overestimate the signal.

Generalized Orthogonal Matching Pursuit takes a simpler approach to element selection. It se-
lects a predetermined number of indices in each iteration, for which 8 is advertised as a decent
choice, though it should be less if the sparsity level is below 8. Based on this it would be fair to
assume that the relation between the selected number of indices and the actual sparsity, would
suffice as an upper iteration limit. Though as for Stagewise Orthogonal Matching Pursuit, Reg-
ularized Orthogonal Matching Pursuit a pruning step was found necessary when the signal was
contaminated with noise. This overestimation, however, was of a limited quantity, thus running
for just a few more iteration than the relation between the indices selection number and actual
sparsity, should suffice.

Page 66 of 75

6.2.2 Hybrid Selection

The hybrid selection algorithms take a more aggressive approach and try to estimate the entire
support set each iteration. This, however, makes it inevitable to avoid indices that are not in
the true support set, thus introducing the need for a pruning step in each iteration.

Compressive Sampling Matching Pursuit selects a number of indices, based on the matched filter,
which is twice the targeted support set size. This introduces the need for a pruning step, after
the signal estimation, which removes all but the indices, from the support set, that have the
s highest coefficients in the estimate. An iteration limit set to the sparsity level was initially
used, though through the experiments it was found that, when reconstruction was possible far
fewer iterations were required. This limit would be assumed to be in the magnitude of c log s

with c a small constant. This would also greatly reduce the amount of iteration taken, when
reconstruction was not possible, without making the algorithm perform worse.

Subspace Pursuit takes the same approach as Compressive Sampling Matching Pursuit, though
only select a number of indices, each iteration, as indicated by the desired sparsity. As for
Compressive Sampling Matching Pursuit, an upper iteration limit was set equal to the desired
sparsity, though the algorithm is originally presented to also stop when the residual stops decreas-
ing. Through the experiments, it was found, as for Compressive Sampling Matching Pursuit,
that an upper iteration limit of c log s, would be sufficient with degrading the performance of
the algorithm. Moreover, the strategy of stopping when the residual stop decreasing was found
highly effective, as Subspace Pursuit in relation to Compressive Sampling Matching Pursuit,
did not spend a significant amount of time, trying to reconstruct signals, outside the region of
reconstruction.

6.2.3 Different Signal Models

Through the experiments it was observed that the ability of the algorithms to reconstruct signals,
also depends on the signal model, thus further testing the algorithms on signals, corresponding
those in a given application scenario, is advised.

6.3 Distributed Compressed Sensing

Though compressive sensing is a powerful tool, it is designed to primarily deal with intra-signal
structures, from a single sensor. This makes it inefficient for multiple sensor readings, which
has been widespread through the interest of wireless sensor networks. Due to this Duarte,
Sanvotham, Baron, Wakin and Baraniuk [19] proposed Distributed Compressed Sensing, which
expands the theory to also cover inter-signal correlation structures, as well as enabling distributed
encoding [20].
Lately, multiple methods and algorithms for applying compressed sensing to distributed systems
have been presented. In this thesis, three different alternatives have been covered. This be
Compressive Data Gathering, Distributed Parallel Pursuit and Common-Innocation Subspace
Pursuit. In the following subsection, these will be individually discussed.

Page 67 of 75

6.3.1 Compressive Data Gathering

Compressive Data Gathering is an initial method, for applying compressed sensing to the data
acquisition of large scale wireless sensor networks [29]. The basic principle of Compressive Data
Gathering is that the signal of interest is distributed in space, thus multiple sensors are required
to acquire it. These sensors must be set up using either a chain or three topology. Then each
sensor multiply its own reading with an assigned column of the measurement matrix. In order to
avoid the overhead of distributing these columns, each sensor can generate it self by drawing i.i.d
gaussian coefficients, using a predetermined seed, thus the sink is able to construct the entire
measurement matrix using the same seeds for the individual columns. After having multiplied its
own signal with its measurement matrix column, added the resulting measurement, with possible
incoming measurements of child notes, and forwards this to its parents. This result in the space
distributed signal, having been multiplied with the entire measurement matrix. By doing this
simpler compression is obtained, as adding and multiplying scalar, than what might have been
need if distributed source coding as been used. Additionally load balancing is achieved as each
note only needs to transmit m values, though this m in addition to being less than the total
signal length, must also be smaller than the routes from leaf notes to the sink, in order to be
effective. In addition to having load balancing comparable to data aggregation, more data will
be available at the sink, than simple max or averages.
Moreover, as has been shown trough experiments, this compression is also applicable to data
that is not directly sparse in any basis, i.e. not piecewise smooth. This compression is though
made achievable through occasionally gather the uncompressed data, which can then be used
to sort the measurements, be rearranging the columns of the measurement matrix, such that
the data becomes sparse in a wavelet domain. This however requires that the reading does not
change rapidly, in relation to each other.

6.3.2 Distributed Parallel Pursuit

Distributed Parallel Pursuit is an algorithm for cooperatively, sparsely approximate signals be-
tween nodes. This is based on local use of a Matching Pursuit algorithm, to estimate the support
set of a signal, that have been locally acquired through compressed sensing. The estimated sup-
port set is then exchanged between neighboring nodes, in order to iteratively perform more
accurate estimation of the support sets, using neighboring support sets, as side information.
This algorithm is suitable for system where the nodes are relatively far away for the sink, and
thus being able to estimate support set, and transmit these to a far away sink.

6.3.3 Common-Innovation Subspace Pursuit

Common-Innovation Subspace Pursuit is a recently presented algorithms , for dealing with re-
construction of a large quantities of of correlated signals, that have been individually acquired
through compressed sensing. Moreover, Common-Innovation Subspace Pursuit is designed to
estimate the common and innovation support set separately, aiming at reducing reconstruction
error as well computation time.
Common-Innovation Subspace Pursuit focuses on large scale sensor networks, where the sensor
notes can be divided into clusters, making it an appropriate fit for a star-of-stars topology. A
sequential description of the algorithm starts out by averaging the measurement vectors in the

Page 68 of 75

different clusters, and putting these averages together as columns of a matrix, which is later
used in the estimation of the common support set. This averaging can be performed on cluster
headers, which then send these average to a sink, which combines them. The sink also performs
an averaging of all the measurement matrices, which is also used to estimate the common sup-
port set. The measurement matrices can be separately build at each location, if known seeds are
used for the drawing of the gaussian coefficients. Then eigenvalue decomposition is performed
on the covariance matrix of the matrix formed by the averaged measurements. The eigenvectors
associated with the sc highest eigenvalues are then used as columns in a new matrix, with sc
being the size of the common support set. The eigen-subspace spanned by these eigenvectors
should be relatively close to the subspace spanned by the columns of the averaged measure-
ment matrix indexed by the common support set. Thus the common support set is estimated
by calculating the cosine distance between every column of the averaged measurement matrix
and the eigen-subspace, and selecting the indices of the averaged measurement matrix closest
the eigen-subspace. This common support set can then be communicated back to the nodes.
Each node can then calculate their own innovation support set. This is done by eliminating
the contribution of the common support set, by projecting the notes measurement vector and
measurement matrix onto the subspace that is perpendicular to the span of the measurement
vector columns indexed by the common support set estimation. A Matching Pursuit algorithms
is then used to these projection, in order to separately estimate the innovation support set of
the given node.
Though the algorithm design fit onto a star-of-stars topology, it can be used for any setup. If all
the individual measurements are collected at a sink, the sink can perform the entire algorithm.
It only needs a strategy for dividing the measurements into cluster.
An important aspect for the estimation of the common support set to work, is that every measure-
ment matrix is the sum of two measurement matrices. One of these matrices must be common
to all the nodes, while the other is unique. Otherwise the eigen-value decomposition step won’t
work.
The article presenting the algorithm estimates that only a few nodes is needed in each cluster,
and their results based on this assumption as been verified. Further the article briefly states that
since the common support set estimation is based on eigenvalue decomposition, the algorithm
should be able to deal with cases where the size of the common support set is unknown, by con-
sidering the eigenvalues. In general the experimental results in the article, deal with scenarios
where the number of cluster is equal to the size of the common support set. In the experiments
performed in this thesis, it has been shown that, when the number of clusters is equal to the the
size of the common support set, the eigenvalues do indicate the size of the common support set,
as in this case the number og eigenvalues, that are significantly different from zero, is equal the
size of the common support set. Though it was also shown that, when the number og clusters is
less than the size of the common support set, this approach cannot be used, as only a number
of eigenvalues equal to the number of clusters is significantly different from zero, though the
magnitude of these eigenvalues, might hint somewhat at the common support set size. On the
other hand, when the number cluster is greater than the size of the common support set, the
number of eigenvalues, significantly different from zero was numerically shown to equal to the
number of clusters. Thus in order to deal with an unknown size of the common support set, the
number of cluster might have to be larger than what the size of the common support set might
be, and then a more complex method would have to used to estimate the common support set

Page 69 of 75

size, based on the eigenvalues.

Page 70 of 75

7
CONCLUSION

7.1 Contributions and Conclusion

The term compressed sensing originate from the fact, that if prior knowledge is available re-
garding sparsity in a well-known transform domain of a signal, the process of sampling and
compressing the signal can be combined.
Two aspects need to be addressed in the system design, in order to utilize compressed sensing.
First, a measurement matrix has to be applied during the sampling. This measurement matrix
must satisfy the restricted isometry property, which ensures an isometric mapping of compress-
ible signals into a smaller vector space. Moreover, the measurement matrix must be incoherent
with the basis, in which the signal is sparse, in order to preserve the information in the signal.
Second, a reconstruction algorithm is required, which can solve the resulting underdetermined
system. Linear programming techniques are capable of solving this task, however, they have
proven insufficient, due to high computational complexity. For practical use, a family of iterative
greedy algorithms, known as matching pursuit, has been advocated. These algorithms have been
proven to be able to reconstruct signals while being more computationally efficient than linear
programming.
The matching pursuit algorithms primarily differ on two points; stopping criteria and element
selection strategy. For stopping criteria, upper limits for iterations, related to the sparsity, has
been used, as well as sufficiently low residual and decreasing residual. Upper limits have been
shown to be as low as a logarithmic order of the sparsity, which makes for very efficient algo-
rithms. With regards to element selection strategies, this thesis has subdivided the algorithms
into the two categories termed forward and hybrid selection, as they highly resemble these kinds
of subset selection in linear regression. The forward selection algorithms carefully select and
add indices to the support set in each iteration. The most simple approach is that of orthogo-
nal matching pursuit, which selects a single element in each iteration. Three approaches have
been considered, each trying to increase the convergence rate by selecting multiple indices in
each iteration. These have been based on selecting indices with comparable correlation, using
a regularization step or simply selecting a larger number of coefficients each iteration. The hy-
brid selection strategies deliberately overestimate the signal in each iteration in order to find as
many indices of the support as possible. They then introduce a pruning step, which removes
wrongly estimated indices. In general, based on the performed experiments, the hybrid approach
was found most effective, when considering both reconstruct accuracy and iterations required.
Moreover the stopping criteria used in Subspace Pursuit, that terminates when an iteration is
no longer able to reduce to residual, was found suitable.
It has been argued that compressed sensing is suitable for wireless sensor networks, which have
been shown to be true. The utilization of compressed sensing, and thereby combining the sensing
and compression, simultaneously reduces the energy used for sampling signals as well as removes
the need for spending time and energy on compressing the signal afterward. This is highly de-
sirable in wireless sensor networks, where sensor notes often must be kept relatively simple, in
order to keep their cost low. Additionally, compressed sensing enables data aggregation, as the
reading of different sensors can be combined during propagation through networks. This is highly
desirable in sensor networks, where raw propagation of every single reading puts high workloads

Page 71 of 75

of notes close to a sink. Thus, the fact that compressed sensing simplifies the acquisition and
compression of signals, and increases the complexity of reconstruction, makes it a suitable fit for
wireless sensor networks, where the sensors are kept simple while the sink has significantly more
processing power.

The contributions of the present thesis covers.

• Summary of Matching Pursuit algorithms, written in a comparable manner
• New comparable Matlab implementations of Matching Pursuit algorithms
• Analysis based on computational and storage complexity of Matching Pursuit algorithms
• Analysis of selected methods and algorithms for applying compressed sensing in distributed

systems
• Sequential test implementations of distributed algorithms for evaluating reconstruction

using matching pursuit algorithms on data
• Proof of concept for applying compressed sensing and reconstruction to a signal that is

sparse in wavelet a domain
• Proof of concept for applying compressed sensing to distributed signals that are not ap-

parently sparse, whereas other methods are not applicable
• Verifying results of a new algorithm for distributed compressed sensing reconstruction,

known as Common-Innovation Subspace Pursuit
• Testing applicability of new distributed compressed sensing reconstruction algorithm, known

as Common-Innovation Subspace Pursuit, on signals with unknown common sparsity level

7.2 Perspectives and Further Work

The results obtained from the study of Matching Pursuit algorithms, can be used for further
development of efficient implementations. As well as the study of Distrbuted Compressed Sensing
forming a foundation of the knowledge needed to applying Compressed Sensing to wireless sensor
networks.
Further test of the Matching Pursuit algorithm would be advised, using even more different data
models in order to conlcude further on their performance. Additionally, tests using real-life data,
should be performed.
Further investigation of the Common-Innovation Subspace Pursuit algorithms, ability to estimate
common support set of unknown side, are required, to draw conlcusion.
Tests using the Distributed Compressed Sensing implementation should be peformed using hugh
quantities of correlated signals, in order determined their true performance.

Page 72 of 75

8
REFERENCES

[1] A. J. Jerri, “The shannon sampling theorem – its various extensions and applications: A
tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, p. 1565–1596, 1977.

[2] R. G. Baraniuk, “Compressive sensing,” IEEE, Signal Processing Magazine, pp. 118–124,
July 2007.

[3] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks. John
Wiley & Sons Inc, 2007.

[4] K. Sayood, Introduction to data compression. Elsevier Science & Technology, 2006.

[5] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE
Signal Processing Magazine, vol. 25, no. 2, p. 72–82, 2008.

[6] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge
University Press, 2012.

[7] D. C. Lay, S. R. Lay, and J. J. McDonald, Linear Algebra and its Applications. Pearson,
2016.

[8] S. Chen and D. Donoho, “Basis pursuit,” IEEE, Asilomar Conference on Signals, Systems,
and Computers, pp. 41–44, 1995.

[9] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition,” IEEE, Asilomar Con-
ference on Signals, Systems, and Computers, p. 40–44, 1993.

[10] D. L. Donoho, Y. Tsaig, I. Drori, , and J.-L. Starck, “Sparse solution of underdetermined
systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Transactions
on Information Theory, vol. 58, p. 1094–1121, February 2012.

[11] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via reg-
ularized orthogonal matching pursuit,” Springer Journal of Foundations of Computational
Mathematics, vol. 9, no. 3, p. 317–334, 2009.

[12] J. Wang and B. Shim, “Exact reconstruction of sparse signals via generalized orthogonal
matching pursuit,” Conference Record of the Forty Fifth Asilomar Conference on Signals,
Systems and Computers, pp. 1139 – 1142, 2011.

[13] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccu-
rate samples,” Elsevier Applied and Computational Harmonic Analysis, vol. 26, p. 301–321,
2009.

[14] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,”
IEEE Transactions on Information Theory, vol. 55, pp. 2230–2249, May 2009.

[15] E. J. Candés and T. Tao, “Decoding by linear programming,” IEEE Transactions on Infor-
mation Theory, vol. 51, pp. 4203 – 4215, December 2005.

Page 73 of 75

[16] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. John Wiley & Sons Inc,
2013.

[17] R. Baraniuk, M. A. Davenport, M. F. Duarte, and C. Hegde, An Introduction to Compressive
Sensing. OpenStax-CNX, 2014.

[18] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning.
Springer, 2013.

[19] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, “Distributed com-
pressed sensing of jointly sparse signals,” Conference Record of the Thirty-Ninth Asilomar
Conference on Signals, Systems and Computers, pp. 1537 – 1541, 2005.

[20] Q. Wang and Z. Liu, “A novel distributed compressed sensing algorithm for multichan-
nel electrocardiography signal,” International Conference on Biomedical Engineering and
Informatics (BMEI), vol. 4, no. 2, pp. 607 – 611, 2011.

[21] D. Sundman, S. Chatterjee, and M. Skoglund, “Greedy pursuits for compressed sensing of
jointly sparse signals,” 19th European Signal Processing Conference, pp. 368 – 372, August
2011.

[22] K. Huang and J. Liu, “Inner–outer support set pursuit for distributed compressed sensing,”
Ieee Transactions on Signal Processing, vol. 66, pp. 3024 – 3039, June 2018.

[23] B. L. Sturm and M. G. Christensen, “Comparison of orthogonal matching pursuit imple-
mentations,” 20th European Signal Processing Conference, pp. 220 –224, August 2012.

[24] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE
Transactions on Signal Processing, vol. 41, no. 12, p. 3397–3415, 1993.

[25] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal
matching pursuit,” IEEE Transactions on Information Theory, vol. 53, pp. 4655 – 4666,
December 2007.

[26] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate measurements
via regularized orthogonal matching pursuit,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, p. 310–316, April 2010.

[27] D. Needell, J. A. Tropp, and R. Vershynin, “Greedy signal recovery review,” IEEE, Asilomar
Conference on Signals, Systems, and Computers, pp. 1048–1050, 2008.

[28] J. Wang, S. Kwon, P. Li, and B. Shim, “Recovery of sparse signals via generalized orthog-
onal matching pursuit: A new analysis,” IEEE Transactions on Signal Processing, vol. 64,
pp. 1076–1089, February 2016.

[29] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering for large-scale wireless
sensor networks,” Proceedingsof the 15th annual international conference on mobile com-
puting and networking, pp. 145 – 156, 2009.

[30] D. Sundman, S. Chatterjee, and M. Skoglund, “Parallel pursuit for distributed compressed
sensing,” IEEE Global Conference on Signal and Information Processing, pp. 783 – 786,
2013.

Page 74 of 75

[31] D. Sundman, S. Chatterjee, and M. Skoglund, “Design and analysis of a greedy pursuit for
distributed compressed sensing,” IEEE Transactions on Signal Processing, vol. 64, pp. 2803–
2818, June 2016.

[32] J. Liu, K. Huang, and X. Yao, “Common-innovation subspace pursuit for distributed com-
pressed sensing in wireless sensor networks,” IEEE SENSORS JOURNAL, vol. 19, pp. 1091–
1103, February 2019.

Page 75 of 75

A
ALGORITHM IMPLEMENTATIONS

In this section the implementations of the algorithms will be listed.

A.1 Orthogonal Matching Pursuit (OMP)

Listing A.11. Orthogonal Matching Pursuit (OMP)

% OMP.m
% Orthogonal Matching Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% s − Spar s i t y o f s i g n a l
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = OMP(s , y ,A)

k = 0 ;
lambda = zeros (s , 1) ;
x = zeros (s , 1) ;
r = y ;
while k < s

k = k + 1 ;
[~ , omega] = max(abs (A. ’ ∗ r)) ;
lambda (k) = omega ;
x (1 : 1 : k) = (A(: , lambda (1 : 1 : k)) . ’ ∗ A(: , lambda (1 : 1 : k))) \

A(: , lambda (1 : 1 : k)) . ’ ∗y ;
r = y − A(: , lambda (1 : 1 : k)) ∗x (1 : 1 : k) ;

end
xh = zeros (s ize (A, 2) ,1) ;
xh (lambda) = x ;
x = xh ;

end

A1

A.2 Stagewise Orthogonal Matching Pursuit (StOMP)

Listing A.21. Stagewise Orthogonal Matching Pursuit (StOMP)

% StOMP.m
% Stagewise Orthogonal Matching Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% S − Max number o f i t e r a t i o n s to perform
% t − Threshold ing value
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = StOMP(S , t , y , A)

k = 0 ;
lambda = [] ;
x = zeros (s ize (A, 2) ,1) ;
r = y ;
while k < S && norm(r) > 0.0001

k = k + 1 ;
v = A. ’ ∗ r ;
omega = Se l e c t (v , r , A, t) ;
i f s ize (A, 1) < s ize (omega , 1)

[s ize (A, 1) s ize (omega , 1)]
end
lambda = union (lambda , omega) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ; ;
r = y − A∗x ;

end
end
% Helper func t i on f o r i n d i c e s s e l e c t i o n
function j = S e l e c t (v , r , A, t)

s i g = norm(r) / sqrt (s ize (A, 1)) ;
[B, I] = sort (abs (v) , ’ descend ’) ;
ind = 1 ;
while B(ind+1) > s i g ∗ t && ind < max(s ize (B))

ind = ind+1;
end
j = I (1 : 1 : ind) ;

end

A2

A.3 Regularized Orthogonal Matching Pursuit (ROMP)

Listing A.31. Regularized Orthogonal Matching Pursuit (ROMP)

% ROMP.m
% Regular i zed Orthogonal Matching Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% s − Spar s i t y o f s i g n a l
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = ROMP(s , y , A)

k = 0 ;
lambda = [] ;
x = zeros (s ize (A, 2) , 1) ;
r = y ;
while norm(r) > 0.0001 && k < s

k = k + 1 ;
v = A. ’ ∗ r ;
[B, I] = sort (abs (v) , ’ descend ’) ;
omega = subset (I (1 : 1 : s , :) , B(1 : 1 : s , :)) ;
lambda = union (lambda , omega) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ;
r = y − A∗x ;

end
end
% Helper func t i on f o r subet s p l i t and s e l e c t i o n
function [j 0] = subset (j , jb)

ib = [1] ;
i e = [1] ;
while i e (length (i e)) ~= length (j)

i f jb (ib (length (ib))) <= 2∗ jb (i e (length (i e))+1)
i e (length (i e)) = i e (length (i e)) + 1 ;

else
ib = [ib i e (length (i e)) +1] ;
i e = [i e i e (length (i e)) +1] ;

end
end
x = zeros (length (ib) ,1) ;

A3

for i = 1 : length (ib)
x (i) = norm(jb (ib (i) : 1 : i e (i))) ;

end
[~ , I] = sort (x , ’ descend ’) ;
ind = I (1) ;
j 0 = j (ib (ind) : 1 : i e (ind)) ; % Se l e c t best i n t e r v a l
%j0 = j (ib (1) : 1 : i e (1)) ; % Se l e c t f i r s t i n t e r v a l

end
function [j 0] = subsetOld (j , jb)

j0b = abs (jb) ;
j 0 = j ;
while max(j0b) > 2∗min(j0b)

j 0 (length (j0b)) = [] ;
j0b (length (j0b)) = [] ;

end
dec = 2 ;
j 0bt = j0b ;
j 0 t = j0 ;
while j 0b t (length (j 0bt)) ~= jb (length (jb))

j 0bt = abs (jb (dec : 1 : length (jb))) ;
j 0 t = j (dec : 1 : length (j)) ;
while max(j 0bt) > 2∗min(j 0bt)

j 0 t (length (j 0bt)) = [] ;
j 0b t (length (j 0bt)) = [] ;

end
i f norm(j0b) < norm(j 0bt)

j0b = j0bt ;
j 0 = j 0 t ;

end
dec = dec+1;

end
end

A4

A.4 Generalized Orthogonal Matching Pursuit (gOMP)

Listing A.41. Generalized Orthogonal Matching Pursuit (gOMP)

% gOMP.m
% Genera l i zed Orthogonal Matching Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% s − Spar s i t y o f s i g n a l
% S − I nd i c e s to s e l e c t each i t e r a t i o n
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = gOMP(K, S , y , A)

k = 0 ;
lambda = [] ;
x = zeros (s ize (A, 2) , 1) ;
r = y ;
[m, ~] = s ize (A) ;
while (k < (m/S)) && (norm(r) > 0 .0001)

k = k + 1 ;
v = A. ’ ∗ r ;
[~ , I] = sort (abs (v) , ’ descend ’) ;
omega = I (1 : 1 : S) ;
lambda = union (lambda , omega) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ;
r = y − A∗x ;

end
end

A5

A.5 Compressive Sampling Matching Pursuit (CoSaMP)

Listing A.51. Compressive Sampling Matching Pursuit (CoSaMP)

% CoSaMP.m
% Compressive Sampling Matching Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% s − Spar s i t y o f s i g n a l
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = CoSaMP(s , y , A)

k = 0 ;
lambda = [] ;
x = zeros (s ize (A, 2) , 1) ;
r = y ;
while ((k <= s) && (norm(r) > 0 .001))

k = k + 1 ;
v = A. ’ ∗ r ;
[~ , I] = sort (abs (v) , ’ descend ’) ;
omega = I (1 : 1 : min(s ∗2 , s ize (A, 2))) ;
[lambda , ~] = find (x) ;
lambda = union (lambda , omega) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ;
B = sort (abs (x) , ’ descend ’) ;
x (abs (x) < B(s)) = 0 ;
r = y − A∗x ;

end
end

A6

A.6 Subspace Pursuit (SP)

Listing A.61. Subspace Pursuit (SP)

% SP .m
% Subspace Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% s − Spar s i t y o f s i g n a l
% y − Measurement vec to r
% A − Measurement Matrix
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = SP(s , y ,A)

x = zeros (s ize (A, 2) , 1) ;
r = y ;
k = 0 ;
[~ , I] = sort (A. ’∗ r , ’ descend ’) ;
lambda = I (1 : 1 : s , :) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’ ∗y ;
ro = r ;
r = y − A∗x ;
while norm(ro) > norm(r) & k <= s

k = k+1;
[~ , I] = sort (abs (A. ’∗ r) , ’ descend ’) ;
lambda = union (lambda , I (1 : 1 : s , :)) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ;
[~ , I] = sort (abs (x) , ’ descend ’) ;
lambda = I (1 : 1 : s , :) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = (A(: , lambda) . ’ ∗ A(: , lambda)) \ A(: , lambda) . ’

∗y ;
ro = r ;
r = y − A∗x ;

end

A7

A.7 Joint Subspace Pursuit (JSP)

Listing A.71. Joint Subspace Pursuit (JSP)

% JSP .m
% Jo int Subspace Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% y − Corre la ted measurement ve c t o r s
% A − Measurement Matrixs
% sc − Common support s e t s i z e
% s i − Innovat ion support s e t s i z e
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = JSP(y , A, sc , s i)

k = 0 ;
%y2 = reshape (y , s i z e (y , 1) , s i z e (y , 3)) ;
r = sum(y . ’) . ’ ;
ro = r+1;
lambda = [] ;
x = zeros (s ize (A, 2) , s ize (A, 3)) ;
while norm(ro) > norm(r)

k=k+1;
sup = zeros (s ize (A, 2) ,1) ;
ro = r ;
r = zeros (s ize (r)) ;
for l = 1 : s ize (y , 2)

[x (: , l) , r l] = modifiedSP (y (: , l) , A(: , : , l) , s c+s i ,
lambda) ;

r = r + r l ;
sup = vote (sup , find (x (: , l))) ;

end
[~ , I] = sort (sup , ’ descend ’) ;
lambda = I (1 : 1 : sc) ;

end
end
function [x , r] = modifiedSP (y , A, s , l i n i)

x = zeros (s ize (A, 2) , 1) ;
r = y ;
lambda = [] ;
l = 0 ;
[~ , I] = sort (abs (A. ’∗ r) , ’ descend ’) ;

A8

lambda = union (I (1 : 1 : s , :) , l i n i) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
ro = r ;
r = y − A∗x ;
while norm(ro) > norm(r)

l = l +1;
[~ , I] = sort (abs (A. ’∗ r) , ’ descend ’) ;
lambda = union (lambda , I (1 : 1 : s , :)) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
[~ , I] = sort (abs (x) , ’ descend ’) ;
lambda = I (1 : 1 : s , :) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
ro = r ;
r = y − A∗x ;

end
end
function [sup] = vote (sup , new)

sup (new) = sup (new) + 1 ;
end

A9

A.8 Sequential test - Distributed Parallel Pursuit (DIPP)

Listing A.81. Sequential test - Distributed Parallel Pursuit (DIPP)

% DIPP .m
% Dis t r ibu t ed Pa ra l l e Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% y − Corre la ted measurement ve c t o r s
% A − Measurement Matrixs
% in − incomming connect ion
% out − outgoing connect ion
% nodes − Number o f measurements
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x , k] = DIPP(y , A, s , in , out , nodes)

x = zeros (s ize (A, 2) , nodes) ;
tp = zeros (s , nodes) ;
r = zeros (s ize (y)) ;
for i = 1 : nodes

[x (: , i) , tp (: , i) , r (: , i)] = SIPP(s , y (: , i) , A(: , : , i) , []) ;
end
k = 0 ;
ro = y ;
while norm(sum(r , 2)) < norm(sum(ro , 2))

k = k+1;
ro = r ;
% −− Transmit
% −− Receive
J = zeros (s , nodes) ;
for i = 1 : nodes

j = consensus (tp (: , in (: , i)) , tp (: , i) , s , x (: , i)) ;
J (: , i) = [j ; zeros (s−s ize (j , 1) , 1)] ;

end
t p s i = zeros (s , nodes) ;
for i = 1 : nodes

t p s i (: , i) = expansion (J (: , i) , x (: , i) , s) ;
end
%[x , tp , r] = SIPP(s , y , A, t p s i) ;
for i = 1 : nodes

[x (: , i) , tp (: , i) , r (: , i)] = SIPP(s , y (: , i) , A(: , : , i) ,
t p s i (: , 1)) ;

A10

end
z = [tp (: , 1) tp (: , 2) tp (: , 3) tp (: , 4) tp (: , 5) tp (: , 6) tp

(: , 7) tp (: , 8)] ;
end

end
%% Main he l p e r s
function [x , lambda , r] = SIPP(s , y , A, t s i)

x = zeros (s ize (A, 2) , 1) ;
r = y ;
ro = i n f ;
lambda = [] ;
l = 0 ;
while (norm(ro) > norm(r)) && (l < s ize (A, 2))

[~ , I] = sort (abs (A. ’∗ r) , ’ descend ’) ;
lambda = union (lambda , I (1 : 1 : s , :)) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
[~ , I] = sort (abs (x) , ’ descend ’) ;
lambda = union (t s i , I (1 : 1 : s , :)) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
[~ , I] = sort (abs (x) , ’ descend ’) ;
lambda = I (1 : 1 : s , :) ;
x = zeros (s ize (A, 2) , 1) ;
x (lambda) = LSESolve (A(: , lambda) , y) ;
ro = r ;
r = y − A∗x ;

end
end
function J = consensus (tq , tp , T, x)

z = zeros (s ize (x)) ;
z (tp) = 1 ;
for i = 1 : s ize (tq , 2)

z (tq (: , i)) = z (tq (: , i)) + 1 ;
end
s = 2 ;
while sum(z (:) >= s) > T

s=s+1;
end
J = find (abs (z) >= s) ;

end
function Tpsi = expansion (J , x , T)

J (find (J == 0)) = [] ;
x (J) = 0 ;
[B, I] = sort (abs (x) , ’ descend ’) ;

A11

Tpsi = union (J , I (1 : 1 :T−length (J))) ;
hold = 1 ;

end

A12

A.9 Common-Innovation Subspace Pursuit (CISP)

Listing A.91. Common-Innovation Subspace Pursuit (CISP)

% CISP .m
% Common−Innovat ion Subspace Pursu i t
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Inputs :
% y − Corre la ted measurement ve c t o r s
% A − Measurement Matrixs
% c l u s t e r − Number o f c l u s t e r s
% c l u s t e r s i z e − S i z e o f the c l u s t e r s
% sc − Common support s e t s i z e
% s i − Innovat ion support s e t s i z e
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outputs :
% x − Reconstructed s i g n a l s
% k − I t e r a t i o n s taken
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [x] = CISP(y , A, c l u s t e r , c l u s t e r s i z e , sc , s i)

x= zeros (s ize (A, 2) , s ize (A, 3)) ;
Y = zeros (s ize (y , 1) , c l u s t e r) ;
for i = 1 : c l u s t e r

i n t = ((i −1)∗ c l u s t e r s i z e +1) : 1 : (i ∗ c l u s t e r s i z e) ;
Y(: , i) = (1/ c l u s t e r s i z e) ∗ sum(y (: , i n t) , 2) ;

end
Ac = (1/(c l u s t e r ∗ c l u s t e r s i z e)) ∗ sum(A, 3) ;
[V,D] = eig (Y∗Y. ’) ;
V2 = V(: , max(s ize (V, 2)−sc +1 ,1) : 1 : s ize (V, 2)) ;
d i s t = zeros (1 , s ize (Ac , 2)) ;
for i = 1 : s ize (Ac , 2)

d i s t (i) = 1 − (norm(V2 . ’ ∗ Ac (: , i)) /norm(Ac (: , i))) ;
end
[B, I] = sort (d i s t , ’ ascend ’) ;
C = sort (I (1 : 1 : sc)) ;
Acc = Ac (: ,C) ;
i n t e r = 1 : 1 : s ize (A, 2) ;
i n t e r (C) = [] ;
t e s t = zeros (1 ,400) ; i =1;
for c = 1 : c l u s t e r

for cs = 1 : c l u s t e r s i z e
ind = (c−1)∗ c l u s t e r s i z e+cs ;
t e s t (ind) = i ;
i=i +1;
Acc = A(: ,C, ind) ;

A13

P = eye (s ize (A, 1)) − ((Acc / (Acc . ’ ∗ Acc)) ∗ Acc . ’) ;
yp = P∗y (: , ind) ;
At = A(: , : , ind) ;
At (: ,C) = [] ;
Ap = P∗At ;
xk = zeros (s ize (A, 2) ,1) ;
xk (i n t e r) = SP(s i , yp , Ap) ;
xk (C) = 1 ;
xk (C) = LSESolve (Acc , y (: , ind)−At∗xk (i n t e r)) ;
x (: , ind) = xk ;

end
end

end

A14

LIST OF ALGORITHMS

2.3.1 Matching Pursuit framework . 9
3.1.1 Orthogonal Matching Pursuit (OMP) . 16
3.1.2 Stagewise Orthogonal Matching Pursuit (StOMP) 18
3.1.3 Regularized Orthogonal Matching Pursuit (ROMP) 20
3.1.4 Generalized Orthogonal Matching Pursuit (gOMP) 21
3.2.1 Compressive Sampling Matching Pursuit (CoSaMP) 22
3.2.2 Subspace Pursuit (SP) . 24
3.3.1 JSP . 25
3.3.2 modified SP . 26
4.2.1 Distributed Parallel Pursuit (DIPP) . 30
4.2.2 Parallel Pursuit with Side Information (SIPP) . 31
4.2.3 consensus . 32
4.2.4 expansion . 32
4.3.1 Common-Innovation Subspace Pursuit (CISP) . 35

A15

C
NOTATION

In this thesis, the following notations are used. Scalars are denoted as lower case letters e.g. c.
Vectors are denoted as lower case bold letters e.g. x. Matrices are denoted as capital bold letter
e.g. A. Capital calligraphy letter will be used to indicate sets of processing notes.

A few general help function are:

supp(x) The support of vector x, i.e. indexes associated with nonzero coefficients.
supp(x, c) The index of the c highest coefficient values in x

A16

	Preface
	Abstract
	Resume
	Introduction
	Problem Statement
	Organisation

	Background
	Sparse Signals
	Compression
	Transform Coding

	Compressed Sensing
	Measurement Matrices
	l1 Minimization Reconstruction
	Matching Pursuit Reconstruction

	Distributed Data Gathering
	Aggregation
	Network Coding
	Distributed Source Coding

	Distributed Compressed Sensing
	Signal Models

	Matching Pursuit for Sparse Approximation and Compressive Sensing
	Forward Selection
	Orthogonal Matching Pursuit (OMP)
	Stagewise Orthogonal Matching Pursuit (StOMP)
	Regularized Orthogonal Matching Pursuit (ROMP)
	Generalized Orthogonal Matching Pursuit (gOMP)

	Hybrid Selection
	Compressive Sampling Matching Pursuit (CoSaMP)
	Subspace Pursuit (SP)

	Joint Compressed Sensing Problems
	Joint Subspace Pursuit (JSP)

	Distributed Compressed Sensing
	Compressive Data Gathering (CDG)
	Application

	Distributed Parallel Pursuit (DIPP)
	Parallel Pursuit with Side Information (SIPP)
	Consensus
	Expansion
	Application

	Common-Innovation Subspace Pursuit (CISP)
	EVD based Common Subspace Pursuit (ECSP)
	Projection based Innovation Subspace Pursuit (PISP)
	Application

	Numerical Experiments and Results
	Matching Pursuit Experiments
	Data Dimensions and Reconstruction
	Reconstruction Error

	Distributed Compressed Sensing Experiments
	Obscure Sparsity
	Multiple Correlated Signals
	CISP Performance Verification
	Unknown Common Support Set Size

	Discussion
	Measurement Matrix
	Matching Pursuit
	Forward Selection
	Hybrid Selection
	Different Signal Models

	Distributed Compressed Sensing
	Compressive Data Gathering
	Distributed Parallel Pursuit
	Common-Innovation Subspace Pursuit

	Conclusion
	Contributions and Conclusion
	Perspectives and Further Work

	References
	Algorithm Implementations
	Orthogonal Matching Pursuit (OMP)
	Stagewise Orthogonal Matching Pursuit (StOMP)
	Regularized Orthogonal Matching Pursuit (ROMP)
	Generalized Orthogonal Matching Pursuit (gOMP)
	Compressive Sampling Matching Pursuit (CoSaMP)
	Subspace Pursuit (SP)
	Joint Subspace Pursuit (JSP)
	Sequential test - Distributed Parallel Pursuit (DIPP)
	Common-Innovation Subspace Pursuit (CISP)

	List of Algorithms
	Notation

