
Sparse Approximation and Dictionary Learning Using Cloud K-SVD

for Image Denoising

Christian Marius Lillelund Henrik Bagger Jensen
201408354@post.au.dk 201304157@post.au.dk

Master’s Thesis

Section of Electrical and Computer Engineering
Department of Engineering

Faculty of Science and Technology
Aarhus University

Denmark

Sparse Approximation and Dictionary Learning Using Cloud

K-SVD for Image Denoising

Christian Marius Lillelund and Henrik Bagger Jensen

M.Sc. Computer Engineering, Aarhus University

January 3, 2020

i

Title page

Thesis title Sparse Approximation and Dictionary Learning Using Cloud K-SVD
for Image Denoising

Thesis ECTS 30

University Aarhus University

Faculty Faculty of Science and Technology

Department Department of Engineering

Section Section of Electrical and Computer Engineering

Master’s program Computer Engineering

Authors Christian Marius Lillelund and Henrik Bagger Jensen

Student numbers 201408354 and 201304157

Date of submission January 3rd, 2020

Supervisor Christian Fischer Pedersen

ii

Preface

This master’s thesis is written for the Department of Engineering at the Faculty of Science and
Technology, Aarhus University. It is part of the study program Computer Engineering, and was
written in the autumn of 2019.

We would like to thank our adviser Christian Fischer Pedersen for suggesting the initial
problem domain, supervising our thesis, and for providing relevant data, that allowed us to carry
out the experiments we wanted.

All source files associated with this thesis are found at: https://github.com/thecml/thesis-
cloudksvd

Aarhus, January 3rd, 2020

iii

iv

Abstract

Introduction: Ever since the Internet got traction in the 1990s, the total sum of data available
online has been ever increasing. As of September 2014, there were 1 billion websites on the Internet
and estimates say, that the big four service companies (Google, Amazon, Microsoft and Facebook)
store at least 1,200 petabytes between them. With this surge of data, there has been a growing
interest in the study of sparse approximation of signals for applications such as compression of
data, regularization in statistics and denoising of acoustic signals and images. Methods: A
central problem in sparse approximation is the design of a dictionary that contains fundamental
signal-atoms, where signals can be described as linear combinations of these atoms. For this task,
we can either choose a dictionary that has been designed for us (e.g. Haar, DCT) or make our
own by adapting a random dictionary to a set of training signals, as done in the acclaimed K-SVD
algorithm from 2006. Ten years later in 2016, a new dictionary learning algorithm called cloud
K-SVD saw the light of day, an extension to K-SVD that offers several benefits when data is bulky
or governed by privacy concerns: Cloud K-SVD can train data at mulitple local nodes and hereby
produce a mutual dictionary to represent low-dimensional geometric structures in all the data
combined by alternating between sparse approximation of the signals and updating the dictionary
to better fit the data in a collaborative fashion. Results: In this thesis, we analyze cloud K-SVD
and demonstrate its efficiency at learning geometric structures in both synthetic and real data. We
also show its ability to remove Gaussian noise from natural images as a benchmark application and
from high-dimensional medical computerized tomography (CT) images as a practical application.
The results suggest that cloud K-SVD is well-suited for constructing a mutual dictionary among
multiple nodes on both synthetic and real data. Moreover they show that cloud K-SVD can
remove quantifiable levels of noise from benchmark and medical images, but at the cost of a large
memory consumption and a lot of network traffic overhead. Future work: The next step would
be to deploy our solution to an enterprise-system that can handle larger data loads, for example
images in full resolution and in 3D, than we are currently able to. Moreover other protocols,
other than HTTP over Ethernet, should be investigated for communicating between nodes, as
other protocols may improve performance.

Keywords— Sparse approximation, Dictionary learning, Distributed systems, Consensus,
Image Denoising, Kubernetes

v

vi ABSTRACT

Resume

Introduktion: Internettet blev for alvor populært i 1990’erne og siden er den samlede mængde
af data, som er tilgængeligt online, kun steget. I september 2014 var der en milliard hjemmesider
p̊a internettet, og det siges at de fire store internet-firmaer (Google, Amazon, Microsoft og
Facebook) sidder p̊a mindst 1200 petabytes hver især. Denne tendens har gjort det interessant
at undersøge, hvordan datasignaler kan repræsenteres med mindre data til r̊adighed, s̊akaldte
sparse approximationer. Det finder nytte ved blandt andet komprimering af data, indenfor
statistik og til at fjerne støj fra lyd- og billedsignaler. Metoder: Et centralt problem ved
disse sparse approximationer er at kunne lave et s̊akaldt dictionary (opslagsværk, red.), som
best̊ar af grundlæggende signalvektorer, som s̊a kan bruges til at repræsentere andre signaler ved
linearkombinationer af disse grundlæggende vektorer. Til det kan man enten vælge et dictionary,
som er lavet i forvejen (f.eks. Haar og DCT), eller lave et selv ved at træne det efter bestemte
træningssignaler, hvilket var tilfældet med den meget anerkendte K-SVD algoritme fra 2006.
Ti år senere i 2016 s̊a en ny algoritme, til at træne disse dictionaries, dagens lys, nemlig cloud
K-SVD. Denne er en udvidelse til K-SVD fra 2006 med flere nye fordele, n̊ar man arbejder med
store datamængder eller data som er beskyttet mod deling. Cloud K-SVD kan træne et dictionary
p̊a flere computere og hermed producere et samlet fælles dictionary, der kan repræsentere lav-
dimensionelle geometriske strukturer i den samlede datamængde. Dette opn̊as ved dels at lave en
sparse approximation af dataet og dels at træne et dictionary til bedre at repræsentere den data,
man træner, gennem samarbejde imellem computere. Resultater: I dette speciale analyserer
vi cloud K-SVD og demonstrerer hvor effektiv den er til at lære geometriske strukturer i b̊ade
syntetisk og rigtig data. Vi viser ogs̊a dens evne til at fjerne normalfordelt støj fra billeder, der
enten er konstruerede til formålet eller produceret af en ct-scanner. Vores resultater peger p̊a,
at cloud K-SVD er god til at lave et fælles dictionary blandt flere computere p̊a baggrund af
forsøg med b̊ade syntetisk og rigtig data. Ydermere viser de ogs̊a, at cloud K-SVD kan fjerne
målbare mængder af støj fra testbilleder og billeder fra en ct-skanner, men p̊a bekostning af
et betydeligt hukommelsesforbrug og megen netværkstrafik. Fremtidigt arbejde: Det næste
naturlige skridt vil være at udrulle vores applikation p̊a et system, der kan h̊andtere større
datamængder, f.eks billeder i fuld størrelse og i 3D, end vores nuværende system kan. Desuden
bør andre netværksprotokoller end HTTP over Ethernet undersøges til kommunikation mellem
computere, da de m̊aske kan forbedre systemets ydeevne.

vii

viii RESUME

Contents

Preface iii

Abstract v

Resume vii

1 Introduction 1

1.1 Practical cases and SOTA . 1

1.2 Where we can contribute . 4

1.3 Problem definition . 5

1.4 Outline . 5

2 Historical background and studies 7

2.1 A look at modern signal processing . 7

2.2 Applications of the compressed sensing framework 9

2.3 The need for distributed systems . 10

2.4 Dictionary learning in distributed systems . 11

3 Signal processing theory 15

3.1 Signal models and Norms . 15

3.2 Signal sampling in compressed sensing . 19

3.3 Signal recovery in compressed sensing . 21

3.4 The transition to sparse approximation . 24

3.5 Sparse approximation . 24

3.6 Dictionary learning in sparse approximation . 28

3.7 Consensus and power iterations . 32

3.8 The cloud K-SVD and distributed learning . 35

4 Cloud computing theory 39

4.1 Concepts of cloud computing . 39

4.2 Microservices in the cloud . 41

4.3 Building containers with Docker . 42

4.4 Controlling containers with Kubernetes . 44

5 Design and implementation 49

5.1 Overall design and solution . 49

5.2 Cluster considerations and operating-systems . 50

5.3 Implementation details . 53

ix

x CONTENTS

6 Experiments and results 55
6.1 Introduction to experiments . 55
6.2 Experiments using synthetic data . 57
6.3 Experiments using image patches . 68
6.4 Experiments using medical images . 86

7 Discussion and conclusion 93
7.1 Lessons learned . 93
7.2 Conclusion . 97
7.3 Future work . 98

Nomenclature 99

Bibliography 101

A Image and signal quality assessment metrics 107

B Configuring Kubernetes on a multi-node setup 109

C Pod API interface 115

D Dockerfiles for Docker images 117

E YAML deployment files for pods 121

F Algorithms 125

Chapter 1

Introduction

We live in an era that has been dubbed the Big Data era by the computer science and engineering
community, as large volumes of a wide variety of valuable data continue to be generated at a
non-stop pace from a broad range of data sources [1]. For instance, data gathered exclusively
by social networks translates to millions of images, videos and messages alone. According to
statistics, almost 500 TB social data is produced every day [2]. With the digital transformation
we see today, all kinds of information has started being present in cyberspace in unprecedented
quantities. This phenomenon has encouraged researchers to experiment and invent new ways of
processing and storing large amounts of data that would otherwise have proved to be infeasible
with current technologies and knowledge.

This study addresses how advances in computer engineering in the areas of distributed
systems and machine learning can help solve problems in data processing and representation that
traditionally required immense resources or unrestricted access to all available data at once [2]. In
today’s world, scenarios exist where data is presented to the system in such a large quantity that
any processing or information gathering would be intangible. The presented data could have been
subjected to large amounts of noise or data regulation laws could be in place, like the recently
introduced GDPR regulations in all European Union member states, that prohibit personal data
of interest to be sent around freely.

We address the problem of big data and how we can learn to process it better, since it
has become relevant in a number of fields. These include the audio and sound industry, where
distortion and noise can easily ruin an otherwise brilliant recording (case 1), the entertainment
industry, where online video streaming services get hamstrung by a lack of proper coverage and
bandwidth limits (case 2), and finally in the health-care sector, where images from computed
tomography (CT) scanners are easily susceptible to noise (case 3). Improvements in these fields
could benefit avid podcast listeners, quality-concerned television viewers or medical doctors like
radiologists, respectively. The next section will present these three examples as practical cases
and investigate possible solutions.

1.1 Practical cases and SOTA

Case 1, audio: The first case where our initial problem could find relevance is in problems with
audio recordings where unwanted noise easily sneaks in. We consider an auditorium meant for
presentations, lectures and speeches, where computer devices with microphones are placed around
the hall to record all speech. An example of this case is illustrated in figure 1.1. These capturing
devices record all acoustic signals both real speech and noise coming from the audience and
outside the room. The degree of external noise may vary depending on the time of day. Each
device has a CPU, some on-board memory and a connection over wireless to an external server.

1

2 CHAPTER 1. INTRODUCTION

Its job is to capture all acoustic signals, use some method to remove any unwanted noise and
deliver the final result to a sink that can collect and store multiple signals. The sink must balance
speech and noise accordingly - this means excluding nodes from taking part in producing the final
speech signal if they only pick up noise on their end. For this case, the recording and denoising
part is located at the capturing device placed in the hall and aggregation of multiple incoming
acoustic signals is done somewhere else. Given the auditorium is large, more capturing devices
and multiple sinks may be needed. We consider this case to be interesting for denoising acoustic
signals in large halls, at concerts, stadiums and places with a lot noise.

Presentation

Figure 1.1: A practical example of case 1 set in an
auditorium, where a presenter wants to
record a presentation without any exter-
nal interference or noise.

State of the art : In order to enhance the au-
dio quality and remove unwanted noise we find
the DANSE algorithm made by A. Bertrand
and M. Moonen in [3]. We will not go into
detail on the theory behind the algorithm, but
we are still interested in some of their research.
The special part about their algorithm and
their papers, is the research of recording audio
on multiple stations or nodes located at differ-
ent spots in some confined area, and looking at
the processing of said recordings in what is a
distributed system (multiple nodes basically).
They go from doing a sequential node updating
system [3] to a more complicated system that is
simultaneous and supports asynchronous node
updates in [4]. With some modifications to
their algorithm they show promise and effi-
ciency in the simultaneous and asynchronous
node update, which in the sense of this case 1,
is exactly what we could look into.

Case 2, online streaming : An online video
or game streaming service like Netflix1 or Twitch2 offer a ton of content in high-definition (HD)
quality over the Internet for consumers. At the moment, viewers must specify the level of picture
quality in advance for the whole received signal rather than parts of it. In areas of the world
where Internet bandwidth capabilities are limited and delays may occur, this may force the viewer
to select a low definition (SD) version of the entire video signal. Ideally, one should be able to
pick a hybrid where interesting parts of the signal is kept in HD and others in SD, such as a
birds-eye view of a football game where players are well-detailed but the audience is not. An
example of this case is illustrated in figure 1.2.

State of the art : A technique called coding tree unit (CTU) has been investigated and used in
multiple studies [5] [6] [7]. The most recent relevant study stem from 2017 where Shen et al. in
[8] encode 3D videos that contain multi-view texture frames using the 3D-HEVC standard. Each
coding unit (CU) is responsible for splitting entire video segments into sub-segments or sub-CU’s
recursively. At each CU depth, the technique allows different types of frame modes to represent
parts of the video differently. This ties back to our original problem for case 2 since these coding
units allow splitting the received video stream into multiple separated parts and use a different
coding strategy, for example a higher resolution, in each individual part. This way patches can
be extracted from both wanted and less wanted parts of the stream signal and passed to the

1Netflix is an American media-services provider and production company that offers online streaming of film
and television series, see: https://www.netflix.com

2Twitch is a live streaming video platform where people or organizations can broadcast esports competitions,
music broadcasts or creative content, see: https://www.twitch.tv/

1.1. PRACTICAL CASES AND SOTA 3

HEVC algorithm to compute CU’s that match the viewers expectations. For example by putting
more emphasis on CU’s that represent the wanted parts (the players in the football match) of the
signal and less on CU’s that represent the unimportant parts (the audience watching the match).
Since the amount of data tend to be large for 3D video encoding and decoding, such an algorithm
need considerable amounts of computer resources to perform.

SD SD SD SD SD SD SD SD SD

SD SD SD SD SD SD

SD SD SD SD

SD SD SD SD

SD SD SD SD

SD SD SD SD SD SD SD

HD HD HD

HD HD HD HD HD

HD HD HD HD HD

HD HD HDSD SD

SD SD

Figure 1.2: Case 2 illustration of HD and SD
patches, in a 9 × 6 grid style. Modi-
fied screenshot of a CS:GO match from
Twitcha.

a(11/10 2019) RERUN: CS:GO - FaZe Clan vs.
mousesports [Overpass] Map 2 - Group A - ESL EU Pro
League Season 10.

Case 3, medical images : For the third case
we turn our attention to the health-care sector
and a problem they face that implicate image
distortion. People suffering from the chronic
autoimmune disease rheumatoid arthritis (RA)
are having regular scans using a CT scanner
and follow-up checks at the hospital. This
is to help establish a definitive diagnosis for
the individual and monitor disease progression.
Specifically, radiologists and doctors use these
images to measure cartilage and bone damage
in the wrists and hands of patients, a measur-
able consequence of RA. Unfortunately, the
images produced by the CT scanner are often
contaminated by static noise and unwanted ar-
tifacts as illustrated in figure 1.3. The additive
noise degrades image quality and makes the job
of radiologists and doctors harder. Moreover,
these images exist in large dimensions and data
come in such large quantities that it can prove
difficult for a single computer to process. If

one were to try to remedy some of the flaws here, it is important to consider privacy concerns
with this kind of data as well, as such images are produced for medical purposes and should never
be distributed anywhere to any system on the Internet without the patient’s consent.

Figure 1.3: A sample captured by a CT scanner
from a dataset that has been put together
by the DanACT study group. The group
was established in 2014 with the goal of
estimating effectiveness and the safety
of various protocols for treating patients
RA. Though it may not be visible in this
picture, the sample contains a substan-
tial amount of static noise and some
unwanted artifacts.

State of the art : The problem that medical
staff face appears fairly simple, but there are
multiple facets to it: First, the data produced
by the CT scanners come in high dimensional-
ity and can take up a considerable amount of
both storage and memory capacity in systems.
In order for a single system to process entire
images it must have the necessary resources at
hand in terms of processing power (CPU) and
available memory to load and process the data
in its entirety. Second, there exists no noise-
free versions of the images, which means that
there are no reference points to use for an algo-
rithm to understand how it is supposed to look
or to measure its performance. It would be up
to the radiologists to score noise-filtered images
as either improved or worsened. Third, since
this is real medical data and stem from actual
patients, there are laws in-place to prohibit
distribution of the data and any third-part in-
volvement in the processing that has not been

4 CHAPTER 1. INTRODUCTION

already approved. To reiterate, the problem here is manifold and any SOTA solution needs to
deal with all facets of it.

By reviewing recently released studies and literature we come across an interesting algorithm
purposed by H. Raja and W. Bajwa in [9] and considered by S. Aleti et al. in [10] that address
the multiple problems we have just described with medical image data. Their algorithm is called
cloud K-SVD and is an extension to a method developed by Aharon et al. in 2006 called K-SVD
[11]. In layman’s terms, the algorithm leverages techniques from the fields of digital signal
processing and machine learning, called sparse approximation (SA) and dictionary learning (DL)
respectively, to learn of and recognize geometric structures in image data. When the algorithm
has been exposed to enough training data, it can restore or rebuild the original data by making an
approximation of it. Such reconstructions have been shown in studies to effectively reduce noise
and distortion in images due to how the approximations are made [12] [13] [14]. Cloud K-SVD is
interesting because it actually addresses all three problems in case 3: First, the algorithm does
not assume that training data is centrally available, which allows dividing the spacious CT images
into blocks and store them separately on more than one computer. Second, because of how the
approximation’s work, cloud K-SVD should be able to solve our noise problem without relying on
noiseless reference images. Third, though cloud K-SVD is a distributed algorithm, it performs all
computations locally and only shares the residual errors (how well it has done) with its peers. In
other words, medical images are not sent around to all participating computers, but rather kept
at individual sites the entire time.

1.2 Where we can contribute

By reviewing recent research in the area, we see that the number of field-tested sparse approxi-
mation and dictionary learning methods are sparse. By field-tested we mean methods that have
been tested with real data, on real systems and that are backed by experiments done in the
field. Those that have been done often assume that data is centrally available to every node [15],
they do not consider node failure in scenarios where the dictionary is spatially separated across
multiple nodes [14] and they often have to make assumptions about the data and network. As of
the this writing, we were not able to locate any scientific papers or studies that documented use
and results of implementing cloud K-SVD in real distributed system for such a use case as case 3,
medical images. In [9], Cloud K-SVD was tested with synthetic and image data for classification
purposes, but not for image denoising and not in a real distributed setup where network delays,
asynchronous communication concerns and package loss play a role. Moreover the experiments
done in [9] assumes data is centrally available, which may not be the situation for our third case.

1.3. PROBLEM DEFINITION 5

Figure 1.4: A showcase of what denoising means. To the left is the original image f0 of a boat without
any noise, in the middle are the observations made from a noisy version of f0 and to the
right is the denoised version of f0. Source: [16].

1.3 Problem definition

The focus of the present master’s thesis is to design, implement, test, compare, and document
variants of the already existing cloud K-SVD algorithm for solving sparse inverse problems via
dictionary learning with applications to image reconstruction and denoising. As a novelty, the
feasibility of implementing and using cloud K-SVD for denoising of natural images will also
be investigated. The algorithm must be optimized to (1) learn and make approximations of
distributed synthetic data to prove its correctness, and (2) learn and reconstruct distributed
patches that have been extracted from noiseless and noisy benchmark images and noisy medical
images. Thus the algorithm must be proven functional via concrete experiments. To quantify
the quality of the variants of cloud K-SVD, comparative evaluations should be carried out via
objective metrics; in the comparisons, time and error aspects should also be considered. As an
overall assessment of cloud K-SVD, evaluations of its scalability and practical use should be
conducted.

1.4 Outline

Let us offer a brief outline of the thesis. Chapter 2 provides an introduction to the domains and
scientific fields related to cloud K-SVD. This includes signal processing history, how dictionary
learning works and what other studies have done. This chapter is intended as a layman’s
introduction to the domain without going into theoretical details. Chapter 3 and 4 provide
in-depth information about the mathematics behind it, algorithms and details on how to develop
modern distributed systems. Chapter 5 explains how we have designed and implemented cloud
K-SVD, which precedes chapter 6 where the algorithm is demonstrated and documented via
concrete experiments. Chapter 7 is the discussion and conclusion to the thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Historical background and studies

Cloud K-SVD is a dictionary learning algorithm that draws on the expertise and knowledge of
multiple scientific fields and study groups. Most prominent are the areas of statistics, digital
signal processing and computer engineering which have been the main contributing factors. In
this chapter we will go through the main contributions, state of the art studies and inventions
that have laid the groundwork for distributed dictionary learning and how it can be facilitated.

2.1 A look at modern signal processing

The foundation of modern digital signal processing techniques is established on the pioneering
work that Nyquist, Shannon and other engineers did on recovering continuous-time signals from a
uniformly distributed set of samples [17] [18]. They showed that any signal could be recovered
exactly from a set of samples captured at more than the Nyquist frequency, which is twice the
highest frequency in the input signal. This later became Nyquist–Shannon’s celebrated theorem
on noiseless coding and underlies many modern digital signal processing applications like visual
electronics, medical imaging devices, radio receivers or sound synthesis for virtual reality (VR)
systems. Ideally in any signal, we would like as much information preserved at the time of capture
to later identify all interesting bits about it, and if we have to transmit it over any noise-prone
media, then all over information would be conserved, and this is what the Nyquist–Shannon
theorem helps us do. Moving on from 1949 when this was first discovered, the amount of data
available in the world and exposed to our capturing devices has grown exponentially, whilst
advances in computer science has given us immensely more powerful computers and devices than
what was present in 1949. This means that sampling at the proposed Nyquist rate today could
lead to an overflow of samples or simply be to costly hardware-wise, because the demanded
frequency would be too high. Researchers realized that going forward, signals had to undergo
some form of compression to even allow data acquisition and later recovery. This gives rise
to a technique called transform coding that exploits the concept of sparsity: There exists a
basis or frame that provides a sparse or compressible representation of a signal. Sparse in this
context means that a signal of length N can be represented with K nonzero coefficients, where
K � N . Sparsity leads to dimensionality reduction and is an efficient compression technique
[19]. A compressible signal can be reproduced with only K nonzero coefficients. Many real-world
signals are not entirely sparse, but often their representation in a certain basis has only a few
large and many small coefficients. These mentioned aspects play a role in compressed sensing
(CS), a emerging framework to potentially reduce the sampling and computational cost of large
signals, because we have prior information about their sparsity in some domain. So saying we
can reduce the frequency and number of samples captured. It allows for solving ill-posed linear

7

8 CHAPTER 2. HISTORICAL BACKGROUND AND STUDIES

systems. In other words, systems where superposition1 holds that do not have a unique solution.
Typically such problems need to be reformulated and some assumptions have to be made to find
a solution. The area of compressed sensing rose to prominence around 2005 and 2006 thanks to
the work of Emmanuel Candès, David Donoho and others who showed that we need only a small
set of measurements to exactly recover a signal originally in finite-dimensions given it can be
approximated by a sparse vector and some other mild conditions apply [19] [20] [21, chapter 3].

Figure 2.1: A historical overview of the digital signal processing topics that relates to CS and sparse
regularization. It shows that both are novel areas of research and studied extensively from the
beginning of the 21st century. Source: [22].

In statistics, simple linear regression is an approach to modeling the relationship between a
response variable (the dependent variable) and one or more predictor variables (the independent
variables). Many recovery algorithms (or model selection tools as they were called) such as ridge
and least absolute shrinkage and selection operator (LASSO) regression that appear in CS have
their roots in statistics. When statisticians faced a problem where the number of variables N were
far greater than the number of measurements M , i.e. N �M , it could be a daunting task to have
to estimate all N parameters to find the response. Fortunately it was discovered that in practice
only a few predictors were needed to estimate the true output, as these algorithms or selector tools
could be leveraged to shrink the number of variables N by identifying the most relevant ones and
disregard the rest. They did so by introducing bias in the estimation of coefficients on purpose to
reduce the variability (number of variables) in the estimate. They were generally used when the
goal was to predict the response for values of predictors that had not yet been discovered. These
methods produced far simpler linear models with less redundant data, removing information that
was already represented in the model, and the resulting estimates generally had a lower mean
squared error (MSE) than the traditional ordinary least squares (OLS) estimates, particularly
when multicollinearity (a predictor in the model can be linearly predicted from another) is present
or when overfitting (a resulting estimator that corresponds too closely or exactly to a particular
set of training data) is a problem. Especially the LASSO regression technique has been adopted
by CS.

1Superposition is a linear time-invariant (LTI) system’s ability to process signals individually and then sum up
at the end to process all signals simultaneously.

2.2. APPLICATIONS OF THE COMPRESSED SENSING FRAMEWORK 9

2.2 Applications of the compressed sensing framework

In the area of telecommunications, Candes et al. show in [23] that `1 minimization can recover a
function f of a signal vector reliably after it has been corrupted in a completely arbitrary fashion
by some error. They prove that under some suitable conditions for a coding matrix A that encodes
f , the input f can be recovered exactly by solving a convex optimization problem, even when large
fractions of the signal is corrupted. This discovery is useful in radio and data communications that
usually rely on redundancy checks or repetition schemes to make error corrections. In medicine,
engineers Shental et al. show that CS can be used for screening individuals for known disease
alleles [24]. It boils down to identifying a handful of persons from a population of 4000 that
potentially carry a known rare allele. This is done by forming a randomized pool of samples used
to train a sensing matrix. They are then able to identify the original gene carriers and show, via
computer simulations, that CS can recover these alleles in larger groups than what was possible
before.

Additionally the area of radiology, one that deals with magnetic resonance imaging (MRI),
has leveraged CS to reduce the duration of a typical MRI scan by undersampling in the transfer-
domain of the MR images [25]. The magnetic field measured is basically a range of Fourier
samples that can be inversely transformed to make an image. Traditionally, undersampling would
induce aliasing upon reconstruction, but when the image has a sparse basis, it can be recovered
efficiently often using a discrete cosine or wavelet transform. The deduction in scan times improve
patient comfort and reduce scan costs for the hospital.

Figure 2.2: The sinc function traditionally used to
reconstruct continuous signals.

It should be clear how CS differs from classi-
cal signal sampling. First, instead of sampling
a signal at some fixed points in time, CS ac-
quires measurements by calculating the inner
products between the signal and some overall
sensing or measurement function. The input
signal could be an image captured by an MRI
scanner, a noisy acoustic impulse response or
continuous temperature readings from a sensor.
Second, the way signal recovery works is differ-
ent in the traditional and compressed sensing
world: Nyquist-Shannon uses the cardinal sine
function or sinc to reconstruct a continuous
band-limited signal, where the normalized ver-
sion of the sinc is a Fourier transform of the
rectangular function without scaling as shown
in figure 2.2. In CS, recovery is either archived
through an iterative algorithm that greedily
selects pieces of already known data to estimate the output signal or a regularization approach
that uses convex optimization to find a minimizer that can estimate the output. Recent work by
Tropp et al. have shown that the former can provide excellent results in terms of recovery time
and error when compared to the latter [26] [27].

In the recovery phase of CS, state-of-the-art recovery algorithms use methods from sparse
approximation to successfully approximate a sparse solution using compressive sampled measure-
ments and something called a dictionary, which is a set of basis functions that can be used to solve
a linear system of equations YYY = DDDXXX by approximating XXX, where YYY are sampled measurements,
DDD is the dictionary and XXX is the solution. We can either chose a predetermined dictionary or
train it based on obtained signal samples. The solution XXX is sparse if it has few nonzero elements
compared to the dimensionality of the original signal. This explanation of recovery is very general

10 CHAPTER 2. HISTORICAL BACKGROUND AND STUDIES

and only provided for the reader to grasp the concept and understand the idea. We will go further
into compressed sensing and sparse approximation in chapter 3 and relate it to our case.

Lastly in wireless sensor networks, the usage of CS can have a significant value in reducing
the power costs of sending and receiving data between nodes, especially large data sets and high-
dimensional samples. Moreover the amount of data we can possibly transfer is often bottlenecked
by network capacity limitations [28]. Leveraging knowledge from distributed source coding,
such as the Slepian-Wolf framework for lossless distributed coding, CS can be expanded into
distributed compressive sensing (DCS) [29] [30] [31]. The result is going from the primarily
intra-signal correlation structure of CS to the intra-signal and inter-signal correlation structure of
DCS. Baron et al. study three example models for jointly sparse signals under the assumption
that there exists a common sparsity component which is present in all signals [28]. The authors
show practical algorithms that can jointly recover multiple signal ensembles from incoherent
measurement bases. Their results in simulation show promise in joint decoding over separate
decoding as it depends on the sparsity of what is called the common component. They argue
that DCS is immediately applicable to a range of problems in sensor arrays and networks as
these three joint-sparsity models show advantages over the standard CS framework in a DCS
setting. A distributed wireless sensor network (WSN) also sets the scene in [32] where Wang et al.
purpose a novel dictionary learning algorithm called online dictionary learning-based compressive
data gathering (ODL-CDG) used for online training using compressive data (CS measurements)
in a network of nodes. They consider parameters such as the quantity of nodes, transmission
range, initial energy and data size. In their simulation results they show that ODL-CDG can
enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in
network nodes compared to traditional dictionary learning approaches such as K-SVD. Keeping
energy consumption low helps enhance the lifetime of the network. Lastly they argue that their
online algorithm can outperform predetermined dictionaries like the DCT dictionary or other
learning approaches such as K-SVD and CK-SVD however these claims are mainly based on
energy consumption and not applicable for a distributed system with a stable power source.

2.3 The need for distributed systems

In recent years we have seen an increase in the number of systems being split up and distributed,
as the need for offloading the workload from a single computing entity to multiple has grown.
This is also the case for many Internet of Things (IoT) based systems that are either constrained
by some physical or logical separation so they have to be distributed. Formally, we denote
such a system as one with no global clock and no shared memory that contain one or multiple
nodes with their own private memory that run a sequence of sequential or parallel processes.
From the first mechanical computers in the late 40’s, past Apple’s Macintosh in 1984 and when
the first smartphones start appearing in the 2000’s, to the era of modern cloud computing, we
have seen a shift from centralized and single processor computing to distributed with multiple
processors involved. This is due to a few reasons: The costs of hardware and power requirements
have gone down, see Koomey’s law [33], making it more feasibly to link multiple computers
instead of buying one large. Modern systems require a high degree of fault tolerance, which
distributing a system can assist with. Also it opens up for improved concurrency and parallelism
when you can allocate computing tasks to multiple nodes, facilitated by the fact that the storage
capabilities of computers are increasing too, see Kryders law [34]. Lastly the number of transistors
in integrated circuits does not double about every two years as Moore’s law predicts [35], instead
it has slowed down and may even fall off in the near future. According to Intel, in 2015 their
pace of advancement has slowed, as we saw processors starting at the 22nm feature in 2012 and
continuing to 14nm. This leads towards the need for horizontal scaling (adding more nodes)
rather than vertical (increasing the computational capabilities of one node) when allocating

2.4. DICTIONARY LEARNING IN DISTRIBUTED SYSTEMS 11

computer resources. Modern cloud technologies that we will make use of follow this approach.
To summarize, the era of distributed systems is certainly upon us and new ways of utilizing
computational resources are still being evolved. It would be a reasonable statement to argue for
the need to explore distributed applications and how this can be merged with already established
theories and practices.

2.4 Dictionary learning in distributed systems

Dictionary learning is a method to efficiently form what is called a dictionary that best represent
the structures in your data of interest. A dictionary consists of multiple basis functions that can
be used to solve a linear system of equations YYY = DDDXXX by approximating XXX and DDD given YYY . In
this case, YYY are sampled measurements of the signal, DDD is the dictionary we create and XXX is a
signal matrix. The desire to efficiently train a generic dictionary for sparse signal approximation
led M. Aharon, M. Elad and A. Bruckstein to develop the K-SVD (K-means and the singular
value decomposition together) algorithm in 2006 [11]. It basically works by alternating between
(1) sparse approximation of the signals using a fixed dictionary and (2) updating the atoms
(columns) in the dictionary based on the latest approximation. The main advantages they argue
is that the algorithm is simple, efficient, and converges quickly with respect to other previously
proposed dictionary learning methods [11]. In their experiments they recover corrupted natural
images using the learned dictionary. Aharon et al. do not assume any compressive technique have
been used on the input signals, hence they train on fully-fledged samples. We will see next that
there exists alternatives to this approach, which can save memory and reduce processing time
without sacrificing accuracy.

A paper by Chouvardas et al. [36] put forward in 2015 extends the research by Aharon et al.
and turns to distributed computing. They purpose a novel algorithm for what is called online
distributed dictionary learning that can better cope with the mounting data capacity concerns
modern applications face. They resort to the same learning philosophy as [15], that is training
a distributed field of nodes by sequentially providing them bits of the data, one step at the
time, until all data has been learned by the model. In sparse approximation this is applicable
when using high-dimensional measurement vectors as training input. Chouvardas et al. form
an ad-hoc network of inter-connected nodes that constitutes their decentralized dictionary and
computes it cooperatively: Each node obtains its own data locally, does a sparse approximation
step using the least-angle regression (LARS) algorithm which computes the LASSO solution
followed by a local dictionary update step, a two-step approach that mimics K-SVD, and finally
exchanges training results with other nodes in the network. This way the nodes work together
to find a new improved dictionary estimate by employing the distributed recursive least-squares
(DRLS) assuming a fully-connected network, i.e. a network where there exists a path between
any two nodes in the network. This again poses some inter-dependency concerns which are not
addressed in the paper and seem to not have been deployed and tested in a real-life context.
Using synthetic data, they validate the performance of the combined DRLS and online dictionary
learning distributed residual least squares (OnDiRLS) and find that the cooperation among nodes
make the OnDiRLS equate the performance of a scheme where all data is centrally available.
Though both perform better than a scheme where data is not centrally available and where nodes
compute the dictionary without cooperation and act as individual learners. Finally they compare
the purposed OnDiRLS and the now widely acclaimed K-SVD algorithm in real image denoising
by extracting 8 × 8 sized patches, a total of 62001, from a noisy 256 × 256 natural image and
randomly distribute the resulting data vectors to five separate nodes for the OnDiRLS case and a
single matrix for the K–SVD case. A dictionary is then trained for each method and a sparse
approximation is made that removes noise from the original test image. They observe that the
performance of the OnDiRLS is slightly better compared to that of the K–SVD when peak signal

12 CHAPTER 2. HISTORICAL BACKGROUND AND STUDIES

to noise ratio (PSNR) is low and that the K–SVD leads to better denoising when PSNR is high.
Distributing the operation has apparently improved its robustness to noise.

A cooperative dictionary learning algorithm that targets big data applications is also what H.
Raja and W. Bajwa purpose in [9]. Their algorithm, denoted cloud K-SVD is a learning scheme
where multiple cloud nodes at geographically-distributed sites collaboratively learn a dictionary to
represent a low-dimensional approximation of the total data quantity. That is, the cloud K-SVD
creates an adaptive overcomplete dictionary by gathering high-dimensional data from all these
sites such that every sample can be represented via a sparse approximation of the dictionary.
The cloud K-SVD accomplishes this goal without an exchange of each sample of data between
nodes. In order to have a global dictionary the nodes must communicate by a consensus protocol
in order to come to an agreement on the importance of each dictionary atom, that is the nodes
collaborative exchange and average atoms from their local dictionary until concordance of the
global one. Practically the total data set is split between nodes and trained individually by the
same two-step approximate-and-learn approach we saw in OnDiRLS before global consensus of
the dictionary is attempted by a finite number of iterations to find the best distributed dictionary.
Technically, the algorithm uses power iterations to gather the approximation from all neighboring
nodes over weighted links and estimate the mutual dominant eigenvectors that span all subspaces
of the data. In a synthetic data experiment they find that the convergence behavior of the cloud
K-SVD was determined by the number of consensus iterations within each power method iteration
and that the cloud K-SVD and centralized (canonical) K-SVD have similar performance but
both of them outperform the local K-SVD variant with no inter-node dictionary strengthening
teamwork. When it comes to natural image classification of the well-known MNIST2 database,
a solid detection rate for five classes puts cloud K-SVD and centralized K-SVD in front. The
overall findings indicate that one should consider information exchange and joint estimation of
mutual improved dictionary elements when designing an online learning algorithm. For real-world
application, consensus iterations, additional computations and synchronous updates are potential
challenges.

Anaraki and Hughes proposed in [37] that the dictionary can be trained from compressed
samples as well. They call this novel algorithm compressive K-SVD (CK-SVD) since it uses
the traditional K-SVD algorithm with CS measurements instead of fully-fledged samples. They
contrast their approach to common sparse approximation approaches, where all data is assumed
fully available at training time, though in practice it may not be. The cost of capturing signals
or the sheer amount of measurements needed may motivate use of compressive sampling and
CK-SVD in their view, so it is basically just a generalization of K-SVD and therefore preserves
its convergence properties [37]. In a prearranged test, they show that CK-SVD is able to recover
almost all atoms compared to a generated ideal dictionary. They extend their test to noisy
input data, and show that CK-SVD is robust in the sense that it can still recover the generated
dictionary atoms very well even from noisy CS measurements. Finally they argue that adaptive
dictionary learning methods can surpass non-adaptive ones and that compressed measurements
can often suffice without loss of information.

One advantage of CK-SVD is that the whole input data or at least a large enough portion
of it does not have to be available at training time because it can get by using just compressive
measurements. In a real-world scenario, the size of the input data might be too big to even fit in
memory or the costs of capturing may be too high. Another technique that can handle such an
inconvenience is online learning, which essentially suggests iteratively updating the dictionary
when new data points become available in a stream. The approach is two-part as in K-SVD: (a)
Find a sparse approximation that includes the latest received sample and then (b) update the
dictionary via a minimization algorithm. This way we can gradually update the dictionary as

2MNIST is a large database of handwritten digits that is often used for benchmarking machine-learning
algorithms.

2.4. DICTIONARY LEARNING IN DISTRIBUTED SYSTEMS 13

new data becomes ready for sparse approximation and help reduce the amount of memory needed.
This factor is the motivation behind work done by Chen et al. [15] where they place only a portion
of the dictionary elements on each computer node in a distributed system. The concatenated
set of elements from all participating nodes would then constitute the actual dictionary. They
argue this distributed online approach is usable in big data scenarios where models are often very
large and must be spread over multiple nodes or even over spatially separated locations and cases
where it is simply not feasible to aggregate all dictionaries in one place due to communication
and privacy concerns. They argue that because of the complexity and size of existing and future
learning tasks, it is a given that learned dictionaries become increasingly demanding in terms of
memory and processor requirements as well, so future work should focus on scenarios where the
dictionary need not be available in a single location but instead spread out over multiple locations,
in their view. They conduct a somewhat artificial experiment with 196 logically distributed
nodes, a collective dictionary of size 100× 196 so one atom for every node, with a 0.2 percent
chance that a node is connected to another and 1 million patch samples of size 10× 10 from a
non-calibrated natural image dataset. Tests are done by denoising a corrupted image using the
trained de-centralized dictionary and then compared to a traditional centralized method as in
[38]. They present respectable denoising results using their novel distributed model, however it
does not take time into account, network communication delay or inter-node dependency concerns
(if one node goes offline, what happens to the atom on that node) as the test setup is entirely
simulated on a single physical computer.

14 CHAPTER 2. HISTORICAL BACKGROUND AND STUDIES

Chapter 3

Signal processing theory

We will now go through the main theory in our thesis, describe key concepts and methods and
compare different models and real-life practices as it lays the groundwork for our design and
implementation of cloud K-SVD. We start off in section 3.1 with a look at relevant literature
on signal norms originating from mathematics that we use in both compressive sensing (CS)
and sparse approximation (SA) theory, then turn our attention to the notion of sparsity, which
is a recurring motif in the text, and also look at the properties of a compressible signal and
the incoherent basis. We then look more specifically at signal sampling by CS in section 3.2
and describe the definitions and theorems in literature behind concepts like the null space
property (NSP) and the restricted isometric property (RIP) criteria. We extend our review to
the signal recovery case for compressive sensing in section 3.3 with focus on the sensing basis
and measurements used in recovery. These sections conclude the compressed sensing part and is
mostly compiled from work done by R. Baraniuk, M. Davenport, M. Duarte, C. Hegde, E. Candès
and E. Ollila [39] [40] [19] [41] with all essential topics included.

The next part will focus on sparse approximation theory. In section 3.4 we relate the theories
and concepts learned in CS on how they work differently in sparse approximation and change our
view slightly, as we are now more interested in accurate recovery protocols from either noiseless
or noisy data already sampled than we were in the CS methodology. We provide an introduction
to the essence of SA in section 3.5, introduce the multiple-measurement vector model (MMV)
and end with a list of requirements that should guide any recovery protocol. Since this thesis is
mainly about SA, its theory and applications, we spend a good amount of time here explaining
the concept. In section 3.6 we build upon our SA knowledge to introduce the concept of dictionary
learning, a working subject of SA that exploits ways of improving what is called a dictionary
or codebook used in signal recovery by adaptively learning it using training data. Here we also
introduce a major algorithm for dictionary learning called K-SVD purposed by Aharon et al. in
2006 [11], an algorithm that constructs the dictionary by having it adapt to the data it is exposed
to. This algorithm was originally designed for centralized systems however, so we widen our view
and look at consensus theory for distributed systems in section 3.7. Here we examine different
protocols for reaching consensus in a distributed system and we incorporate this line of thought
into dictionary learning by looking into a protocol for distributed model learning called cloud
K-SVD in section 3.8 [9].

3.1 Signal models and Norms

Compressed sensing (CS) builds on two fundamental principles: Sparsity and incoherence. Sparsity
expresses the idea that the bandwidth or space used by a continuous signal may be far greater
than the actual information it contains, so it occupies more room than it needs. In other words,

15

16 CHAPTER 3. SIGNAL PROCESSING THEORY

we can significantly reduce or compress the signal without any noticeable loss of information
and ideally we want a signal with only a few nonzero coefficients. Furthermore we can leverage
the fact that many natural occurring signals have a sparse frequency spectrum [40], for example
smooth signals are sparse in the Fourier basis and piecewise smooth signals are sparse in a wavelet
basis [29]. We say a signal is K-sparse, meaning it has at most K nonzero elements and its
support rsupp(XXX) = i : xxxi 6= 0 has cardinality less or equal to K. This means a K-sparse signal
can be approximated well by a linear combination of a small set of vectors from a known basis.
Incoherence is a measure between a measurement matrix ΦΦΦ and a orthonormal basis ΨΨΨ (Wavelet,
Fourier) [42] were we choose to expand our signal in xxx: xxx = ΨΨΨzzz. As a general point of view, the
vector xxx may contain coefficients of a signal f ∈ RN in some orthonormal basis ΨΨΨ with elements
ψψψi:

f(t) =

N∑
i=1

zzziψψψi(t) (3.1)

For example we can expand the signal as sinusoids, wavelets or n-degree polynomials [43]. We
write a decomposition of 3.1 as xxx = ΨΨΨf where ΨΨΨ is an N ×N matrix with waveforms or likewise
f = ΨΨΨ · xxx. Thus we approximate:

xxx ≈
K∑
i=1

zzzniψψψni (3.2)

where K � N and we say xxx is K-sparse in ΨΨΨ and call ΨΨΨ the sparse basis.

The elements of ΨΨΨ = {ψψψi}i∈I where I = 1, 2, . . . , N span the vector space V = RN and are
linearly independent, so we can take a vector from the basis and represent a unique part of xxx. A
signal with a sparse representation in ΨΨΨ must be spread out in the domain it was captured in [40]
and in CS, we strive for low coherent pairs given by an incoherence measurement µ(ΦΦΦ,ΨΨΨ) from 0
to 1 as the largest correlation between any two elements of ΦΦΦ and ΨΨΨ. The more incoherent the
two bases are, the fewer samples are needed. For an N-sample signal that is K-sparse, roughly cK
projections of the signal into the incoherent basis are needed to reconstruct it with high success
(c ≈ 3). So instead of sampling N times, only cK measurements are needed and some incoherent
basis [29]. For the latter part, independent and identically distributed (i.i.d.) Gaussian vectors
often provide a universal measurement matrix that is incoherent with any basis. We say a signal xxx
is compressible if the magnitude of sorted coefficients N of xxx decay by Ns ≤ C1s

−q, s = 1, 2, . . . , n
[39, chapter 2]. The larger values of q, the faster our coefficients decay and the more we can
compress the signal. Sensing basis ΦΦΦ represents a dimensionality reduction step, as it transforms
a space RN into RM where M < N to form undersampled linear measurements yyy = ΦΦΦxxx that
preserve essential information about xxx. Later we want to find a solution for xxx by using these
measurements, our measurement matrix ΦΦΦ and norm minimization strategies [39, chapter 3],
which section 3.2 explains.

Norms are used to express some measurable strength of a signal or to denote a approximation
error between the original signal xxx and the estimated one x̂̂x̂x. If we were to simply map xxx ∈ RN to
x̂̂x̂x ∈ RN−1, we want to find a x̂̂x̂x that minimizes some approximation error ‖ xxx− x̂̂x̂x ‖p. The norm of
xxx for p between [1,∞] defined by:

‖ xxx ‖p=
(N∑
i=1

| xi |p
)1/p

(3.3)

This and all subsequent norms are defined in finite-dimensional Hilbert space and taken from
Boyd and Vandenberghe’s definition in [44, appendix A]. For p =∞ the norm is defined by:

3.1. SIGNAL MODELS AND NORMS 17

‖ xxx ‖∞= max
i=1,2,...,N

| xi | (3.4)

For p < 1, the corresponding unit sphere is non-convex, as this norm does not satisfy all the
axiomatic requirements of a norm [39, chapter 2] [45], so we call the `0 a quasinorm:

‖ xxx ‖0= lim
p→0
‖ xxx ‖pp=| supp(xxx) | (3.5)

While this norm satisfies the triangle inequality, ‖ u+ v ‖0≤‖ u ‖0 + ‖ v ‖0, the homogeneity
property is not met: for t 6= 0, ‖ tu ‖0=‖ u ‖0 6= t ‖ u ‖0. Lastly we introduce a mixed or matrix
norm `p,q for p, q ≥ 1 that can compute the norm of a M ×N matrix AAA that contains columns
(aaa1, aaa2, . . . , aaan). This norm is useful for measuring the total strength of a signal matrix or as an
error estimator between some approximation and the original matrix of signals. It is defined by:

‖ AAA ‖p,q=
(n∑
j=1

(

m∑
i=1

| aaaij |p)q/p
)1/q

(3.6)

The `2,1 variant of the p, q is useful for error correction in sparse approximation since the error
for each column is not squared, i.e. it applies the `p norm to rows and `q norm to the resulting
vector. It is defined by:

‖ AAA ‖2,1=
n∑
j=1

‖ aaaj ‖2=
n∑
j=1

(m∑
i=1

| aaaij |2
)1/2

(3.7)

A special case for the `p,q norm where p = q = 2 is the Frobenius norm, and p =∞ yields the
maximum norm. The Frobenius norm is the square root of the sum of the absolute squares of its
elements and is defined by:

‖ AAA ‖F=

√√√√ m∑
i=1

n∑
j=1

| aaa2
ij |=

√
trace(AAA∗AAA) (3.8)

The trace function returns the sum of diagonal entries of the square matrix AAA. Since AAA
contains columns that can be treated as K independent d-dimensional signals AAA = [aaa1, aaa2, . . . , aaaK]
we can write the Frobenius norm as:

‖ AAA ‖ 2

F
=

K∑
k=1

‖ aaak ‖
2

2
(3.9)

Figure 3.1 shows the unit sphere spanned by the regular p norms in two-dimensional space.
The choice of p has a significant impact on the approximation error. By definition for p ≥ 1, the
unit sphere is convex and centrally symmetric but it is non-convex for p < 1, as its epigraph (the
possible set of points above the graph of the function, or the curved line shown in figure 3.1) is
a non-convex set. If we tried to draw a straight line from one corner to the other it would fall
outside the boundaries of the set enclosed by the epigraph. This property of sets and functions
allows us to use effective and well-known convex optimization methods to solve problems like
least-squares or linear programming. Boyd and Vandenberghe [44, chapter 2] provide a more
thorough look at what convexity means in optimization. Finding a sparse vector xxx is in fact a
difficult combinatorial problem, but luckily there exists convex methods to do exactly that, which
we will explore in the recovery phase.

The vector space RN has the usual inner product:

18 CHAPTER 3. SIGNAL PROCESSING THEORY

< xxx,zzz >= zzzTxxx =
N∑
i=1

xizi (3.10)

The matrix space RM×N has a inner product defined as well:

<XXX,ZZZ >= Tr(ZZZTXXX) =
M∑
i=1

N∑
j=1

XXXijZZZij (3.11)

Figure 3.1: Unit spheres in R2 for `p norms. (a) shows `1 norm for p = 1, (b) shows `2 norm for p = 2,
(c) shows `∞ norm for p =∞ and (d) shows the `p quasinorm for p = 1

2 . Source: [39]

.

Figure 3.2 shows the approximation from a point xxx in R2 to x̂̂x̂x in R1 with various `p norms.
In compressed sensing theory, the norm of vectors and matrices plays an important role in terms
of sparsity and dimensionality reduction. If p is large, it will spread out the error more evenly
between coefficients, but if p is small, it will put more weight on a single or few coefficients and
visually the edges will be more pointy as in figure 3.1. A signal’s compressibility is determined
by the `p space it belongs to. If XXX is a finite sequence of samples xxx1,xxx2, . . . ,xxxN , it only has a
representation `p space for some value of p if its norm is finite. As p get smaller, the elements of
xxx must decay faster to converge for the norm to be bounded and the size of `p decreases as well.
See figure 3.1. Recall for p = 0 it merely counts the number of non-zero values.

Figure 3.2: The approximation of a point in R2 to a subspace A in R1 using various `p norms. (a) shows
approximation in `1 norm, (b) shows it in the `2 norm, (c) shows it in the `∞ norm and (d)
shows it in the `p quasinorm.

It is tempting to apply the seemingly effective `0 quasinorm to find a sparse solution x̂̂x̂x as it
simply counts the number of nonzero entries in x̂̂x̂x. When p goes to zero, the curve of the norm
becomes an indicator function that returns 0 for xxxi = 0 and 1 for every other value. However this
problem is known to be NP-hard, because a `0 minimization problem would have to iteratively
try each possible combination of some coefficient set to zero in a brute-force manner to find a
solution. All combinations of the N

K possible sparse subspaces must be evaluated. Moreover in a
real scenario, a signal vector would rarely be representable by a vector of coefficients containing
many zeros [chapter 1.7][46]. With the `1 and `2 norms we get a sum of all the elements that

3.2. SIGNAL SAMPLING IN COMPRESSED SENSING 19

can be minimized with a cost function J(xxxx̂̂x̂x). Donoho has shown that the `1 is in fact a good
approximation of the ideal `0 norm [47]. Later in the signal recovery section we will see why the
`1 and `2 norms are obvious candidates for solving minimization problems in terms of single and
multiple signal vector recovery.

3.2 Signal sampling in compressed sensing

The protocols we design to sense and sample sparse continuous-time signals must capture essential
information and compress it effectively without trying to comprehend the entire signal [40, p. 2].
Certain rules govern how we should acquire M linear measurements given a signal xxx ∈ RN so that
they can be recovered at a later time. A place to start would be transform coding, a subcategory
of data compression that samples the entire signal with regards to Nyquist rate, then transforms
it to a known basis where it is sparse or compressible. Upon transmission, only the significant
coefficients of the signal would be sent. This technique is used in some applications, but we
want to focus on compressed sampling where we do not sample at the Nyquist rate for reasons
explained in chapter 2. Consider a finite signal vector xxx ∈ RN , it can be represented as a linear
combinations of columns taken from a basis ΨΨΨ ∈ RN×N as xxx = ΨΨΨzzz where zzz is the data of interest,
usually not compressed, but presumably sparse in nature. It is now represented by xxx in the basis
ΦΦΦ. For us to leverage compressed sensing at this point we must find a known pre-determined basis
where the signal xxx is sparse, then sample it by a M ×N measurement matrix ΦΦΦ with M � N to
get measurements:

yyy = ΦΦΦxxx = ΦΦΦΨΨΨzzz (3.12)

We say ΦΦΦ represents dimensionality reduction as it maps RN to RM with M much smaller
than N . It is obvious at this point that ΦΦΦ is underdetermined, i.e it has a lot more columns
than rows, so any reconstruction of xxx from yyy measurements is ill-posed unless we apply some
restrictions on ΦΦΦ which includes the spark of ΦΦΦ, the null property (NSP), the restricted isometry
property (RIP) and bounded coherence to guarantee uniqueness in recovery. We will briefly
review the theory here, but more details are found in [39].

First we denote the null space of ΦΦΦ by:

N (ΦΦΦ) = {zzz : ΦΦΦzzz =~0} (3.13)

To recover all sparse signals xxx from measurements yyy = ΦΦΦxxx, then for any pair of distinct
signal vectors xxx, x̂̂x̂x ∈

∑
K = {xxx :‖ xxx ‖0≤ K} the two measurements ΦΦΦxxx and ΦΦΦx̂̂x̂x must be distinct

as well, otherwise they would map to the same signal. Put formally, if we consider ΦΦΦxxx = ΦΦΦx̂̂x̂x
then ΦΦΦ(xxx− x̂̂x̂x) = 0 with xxx− x̂̂x̂x ∈

∑
2K , then ΦΦΦ uniquely represents all xxx ∈

∑
K if and only if N

contains no vectors in
∑

2K by [section 3.2][39]. This property can be categorized as the spark by
definition:

Definition 1 The spark of a given matrix ΦΦΦ is the smallest number of columns of ΦΦΦ that are
linearly dependent.

Then the following theorem holds by proof in [39, section 3.2.1]:

Theorem 1 For any vector yyy ∈ RM , there exists at most one signal xxx ∈
∑

K such that yyy = ΦΦΦxxx
if and only if spark(ΦΦΦ) < 2K.

This leads to the requirement that M ≥ 2K where 2K = cK for c = 2 as we explained in the
start of section 3.1. The spark property works for exactly sparse signals, however if they are only

20 CHAPTER 3. SIGNAL PROCESSING THEORY

approximately sparse the null space property (NSP) has to be introduced on ΦΦΦ by [39, section
3.2.2]. We will not explain the exact details, though the vectors in the null space of ΦΦΦ should be
separated on a large set of indices, so that we can uniquely recover a sparse xxx.

If the measurements are subjected to noise, the matrix ΦΦΦ needs to satisfy the restricted
isometry property (RIP) which is a more rigorous version of the spark and NSP as shown by
proof in [39, section 3.4]. RIP ensures spatial separation of any pair of K sparse vectors in ΦΦΦ,
such that the dimensionality reduction step is an isometric mapping [39, section 2.3.1.1].

Definition 2 A matrix ΦΦΦ satisfies the restricted isometry property (RIP) of order K if there
exists a δK ∈ (0, 1) such that

1− δK ≤
‖ ΦΦΦx ‖2,2
‖ xxx ‖2,2

≤ 1 + δK (3.14)

holds for all xxx ∈
∑

K = {xxx :‖ xxx ‖0≤ K}

If a matrix ΦΦΦ satisfies definition 2 for order 2K, then by 2 we interpret that ΦΦΦ preserves the
distance between any K sparse vectors. This ensures that a variety of algorithms will be able
to recover a sparse signal xxx from noisy measurements yyy. The task is now to form matrices of
size M ×N that satisfy the RIP of order K. These can be built deterministically as shown in
[48] where M = O(K2 logN) and [49] where M = O(KNα) which unfortunately require M to be
quite large. For any real world application, we want to make M as small as possible. This can
be archived by forming randomized measurement matrices that satisfy the RIP and incoherence
with high probability if M is sufficiently large using:

� Gaussian measurements: The M ×N sensing matrix ΦΦΦ takes entries from a independently
sampled Gaussian distribution with zero mean and variance M−1 [section 3.4][19].

� Binary measurements: ΦΦΦ has independently sampled elements from a symmetric Bernoulli
distribution P (ΦΦΦmi = ±1/

√
M) [section 3.4][19].

� Fourier measurements: ΦΦΦ has elements obtained from the discrete Fourier transform (DFT)
by selecting M rows uniformly at random [section 3.4][19].

� Incoherent measurements: ΦΦΦ is obtained by selecting M rows uniformly at random from an
N ×N orthonormal matrix U = ΦΦΦΨΨΨ∗ with unit norm. U maps the signal from the ΨΨΨ to
the ΦΦΦ domain. The coherence between the measurement/sparsity basis (ΦΦΦ, ΨΨΨ) is called the
mutual coherence. It is defined by:

µ(ΦΦΦ,ΨΨΨ) =
√
N max

i,j
|< φφφi,ψψψj >| (3.15)

Random matrices provide several advantages over deterministic ones. Firstly, the measurements
are democratic, meaning we can recover a signal using a large enough subset of measurements.
This makes the recovery phase more robust to noise and loss. Secondly, if we assume xxx is sparse
in some basis ΨΨΨ, we require that the product ΦΦΦΨΨΨ satisfies the RIP. If ΦΦΦ was deterministic, we
would need to take ΨΨΨ into account in our construction of ΦΦΦ, but not when it is chosen randomly.
If ΦΦΦ is drawn from a Gaussian distribution and ΨΨΨ is a basis, then AAAΦΦΦΨΨΨ will also be a Gaussian
distribution that will satisfy the RIP if M is sufficiently large [39, section 3.5].

Lastly we should impose a condition on ΦΦΦ that guarantees uniqueness in recovery. The
coherence of a matrix can provide such property given ΦΦΦ and is defined by:

Definition 3 The coherence of a matrix ΦΦΦ, µ(ΦΦΦ), is the largest absolute inner product between
any two columns φφφi,φφφj of ΦΦΦ:

µ(ΦΦΦ) = max
i≤i<j≤N

|< φφφi,φφφj >|
‖ φφφi ‖2‖ φφφj ‖2

(3.16)

3.3. SIGNAL RECOVERY IN COMPRESSED SENSING 21

The coherence is always in the range µ(ΦΦΦ) ∈
[√

N−M
M(N−1) , 1

]
, where the lower bound is known

as the Welch bound. When N � M the lower bound is approximately µ(ΦΦΦ) ≥ 1/
√
M . Often

this coherence property can be easily computed compared to criteria such as the spark, NSP and
the RIP which essentially require us to consider (NK) submatrices. Coherence can be related to
said criteria as well by the Gershgorin circle theorem used in [section 3.6][39] leading to:

Lemma 1 The spark condition. For any matrix ΦΦΦ, it holds that:

spark(ΦΦΦ) ≥ 1 +
1

µ(ΦΦΦ)
(3.17)

By merging theorem 1 with lemma 1 we can make the following condition on ΦΦΦ that guarantees
uniqueness with proofs in [section 3.6][39]:

Theorem 2 The guarantee for uniqueness in recovery. If it holds that:

K <
1

2

(
1 +

1

µ(ΦΦΦ)

)
(3.18)

then for each measurement vector yyy ∈ RM there exists at most one signal xxx ∈
∑

K such that
yyy = ΦΦΦxxx.

Theorem 2 together with the Welch bound puts an upper bound on the sparsity parameter K
that guarantees uniqueness in recovery with coherence: K = O(

√
M). For a low coherence µ, K

can be relatively large, whereas K has to be small for a high coherence. A low coherence implies
a high incoherence which implies a smaller number of samples have to be acquired and vice versa.
The RIP can be related to the coherence property as well by this lemma [39, section 3.6]:

Lemma 2 If ΦΦΦ has unit-norm columns and coherence µ = µ(ΦΦΦ), then ΦΦΦ satisfies the RIP order
K with δ = (K − 1)µ for all K < 1/µ.

It becomes clear that K and M are dependent upon each other and the coherence of ΦΦΦ.
Studies have been done to compare deterministic and randomized matrices for ΦΦΦ to obtain a
lower bound of µ(ΦΦΦ) = 1/

√
M , such as the Gabor frame generated from the Alltop sequence

[50]. The idea is to restrict the number of measurements needed to recover a K-sparse signal
to M = O(K2logN). The squared dependency on K can be addressed with an assumption of
average-case/probabilistic behavior in recovery and a probabilistic prior on the set of K-sparse
signals xxx ∈

∑
K [51]. Then if ΦΦΦ has low coherence by µ(ΦΦΦ) and spectral norm by ‖ ΦΦΦ ‖2 and if

K = O(µ2(ΦΦΦ)logN), then xxx can be recovered from measurements yyy = ΦΦΦxxx with high probability.
We can replace the Welch bound to obtain K = O(M logN) which is a linear dependency bound
on measurements [39, section 3.6].

3.3 Signal recovery in compressed sensing

A signal recovery problem seeks a signal vector x̂̂x̂x or signal matrix X̂̂X̂X approximation from a small
number of linear measurements yyy = ΦΦΦxxx with some computational cost. The cost can be the
number of K vectors extracted from sparse basis ΦΦΦ, in other words the sparsity of xxx, how long
it takes to complete the recovery or an error approximation term. In a realistic and practical
scenario said measurements are often imperfect, contain noise and are not exactly sparse. In
any practical case, we strive for a recovery procedure that is said to be stable: small changes in
the measurements must reflect small changes in the restored signal. This clearly depends on a

22 CHAPTER 3. SIGNAL PROCESSING THEORY

number of factors such as original signal sparsity, contaminated noise in the input, the number
of measurements and their disparity. We will set the scene for both noiseless and noisy signal
recovery via sparse approximation in the next sections.

This section will mainly detail the recovery phase of compressed sensing, whilst next section
will explain sparse approximation theory.

An illustrated example of a compressed sensing case can be seen in figure 3.3. Step 1 (red
arrow) is to transform the data of interest zzz, with K-sparsity, into useful or readable data xxx,
sparsity level being kept. This can be done using the orthonormal basis ΨΨΨ of choice. Step 2
(yellow) is to compress the useful data xxx into a compressed representation yyy composed only of
nonzero elements. This can be done using the measurement matrix ΦΦΦ which is randomly generated
to maintain restricted isometric property (RIP). In step 3 (blue arrow), the compressed data can
then be stored or transfered depending on the scenario. In step 4 (green arrow), sparse recovery
of the data x̂̂x̂x can be done, when data is needed by utilizing a sparse approximation algorithm.

� ∈� ℝ
�

Φ ∈Φ ℝ
�×�

� ∈� ℝ
�

=

� = Φ�� Φ�

×

� ∈� ℝ
�

×=

� ∈� ℝ
�

Ψ ∈Ψ ℝ
�×�

� = Ψ�� Ψ�

Φ ∈Φ ℝ
�×�

� ∈� ℝ
�

to	recover � using � and Φ� � Φ

=

Sparse	Approximation	algorithm

Transfer

TransformCompress

Recover

Data	of	Interest ��Readable	Data ��Compressed	Data ��

Compressed	Data �� Recovered	Data �̂ �̂

∈�̂ �̂ ℝ
�

Figure 3.3: An illustration of all the steps done in compressed sensing.

Simple signal recovery have two facets that are characteristic of both compressed sensing and
sparse approximations:

3.3. SIGNAL RECOVERY IN COMPRESSED SENSING 23

1. A signal vector x̂̂x̂x ∈ RN is approximated using a linear combination of vectors from a
measurement matrix ΦΦΦ and the measurement yyy.

2. The procedure finds a compromise between the approximation error and the number of
indices or K signals in xxx that are nonzero.

In an ideal scenario, we want to observe all N coefficients of the signal, but often only a subset
of these are available for observations yyyi =< xxx,φφφi > where i ∈ M and M ⊂ 1, 2, . . . , N with
M � N . With this information we can attempt to recover x̂̂x̂x by yyy = ΦΦΦx̂̂x̂x, where x̂̂x̂x is a solution to
an optimization problem like:

x̂̂x̂x = argmin
xxx

‖ xxx ‖0 subject to xxx ∈ B(yyy) (3.19)

where B(yyy) is an added constraint on x̂̂x̂x that ensures it is consistent with measurements yyy.

‖ xxx ‖0 returns the `0 norm which simply counts the number of nonzero coefficients in xxx,
also known as the sparsity constraint, so 3.19 simply gives the most sparse signal consistent
with the measurements. We assume that xxx is approximately sparse. If the input is noise free,
by [39, section 4.1] we set B(yyy) = xxx : ΦΦΦxxx = yyy. If the input contains bounded noise, we set
B(yyy) = xxx :‖ ΦΦΦxxx− yyy ‖p≤ ε with p = 1, 2,∞. We can further expand this equation as xxx = ΨΨΨzzz which
yields B(yyy) = xxx : ΦΦΦΨΨΨzzz = yyy or B(yyy) = xxx :‖ ΦΦΦΨΨΨzzz − yyy ‖p≤ ε. The latter problem is often called the
LASSO after [52]. As explained in section 3.1, solving the objective function in 3.19 is nonconvex
and finding a minimum is NP-hard. Instead we make the problem more tractable by replacing the
‖ · ‖0 quasinorm with the convex ‖ · ‖1 version as in [39, section 4.1]. Using the `1 furthermore
promotes sparsity in the solution as accounted for in section 3.1 and better eliminates white noise
in higher dimensions than `2, we shall rephrase 3.19 as:

x̂̂x̂x = argmin
xxx

‖ xxx ‖1 subject to xxx ∈ B(yyy) (3.20)

If B(yyy) is also convex, then 3.20 is solvable using known optimization techniques. For all
possible solutions yyy = ΦΦΦx̂̂x̂x, any technique would choose those that minimize the `1 norm of x̂̂x̂x. It
can be proven that if yyy is adequately sparse, then the approximation x̂̂x̂x via `1 minimization is
exact in a noiseless setting as if we knew the K largest coefficients beforehand [40, p. 3]. This
leads to theorem 3:

Theorem 3 If we assume the sequence of coefficients in yyy ∈ RN formed by xxx in a basis ΨΨΨ is
K-sparse and ΦΦΦ is sampled uniformly at random for M measurements, then if

M ≥ C · µ2(ΦΦΦ,ΨΨΨ) ·K · logN (3.21)

is true for some positive constant C, the solution to 3.20 is exact with high probability [40, p. 4-6].

It follows suit with a need for a low squared coherence between the sensing matrix and the
orthonormal basis. If µ(ΦΦΦ,ΨΨΨ) is close to one, then on the order of K logN samples are enough
instead of N [40, p. 4-6]. Also the number of samples suggested by 3 do not have to be carefully
selected as almost any sample set of this size will work. In other words: Sample nonadaptively
in a incoherent basis and use linear programming after sampling to restore an approximation of
the signal. This basically encodes the data in compressed form then decodes or decompress it
using `1 minimization. There exists cases where a signal f would vanish in the sparse basis ΨΨΨ as
described by Candès et al. in [40, p. 5], however the theorem ensures that the portion of sets for
which exact recovery does not occur are small and unimportant. As long as the sampling size is
sufficiently large, the risk of failure is zero.

24 CHAPTER 3. SIGNAL PROCESSING THEORY

3.4 The transition to sparse approximation

Sparse approximation (SA) is a subcomponent of compressed sensing and finds use in especially
denoising applications of acoustic impulse responses (speech) signals, image restoration and data
compression for later recovery in communications systems where bandwidth and throughput is a
concern. The following sections of this thesis will mainly deal with SA in theory and practice,
but often relate that back to compressed sensing. The theory and techniques we accounted for in
section 3.3 is the foundation of sparse approximation, but there are some differences between the
world of CS and SA in theory and concept that are stated here:

� In CS, the signal vector or matrix is approximated using a underdetermined measurement
matrix ΦΦΦ. In SA, we use a overcomplete M ×N dictionary DDD containing N atoms to solve
an underdetermined systems of equations yyy =DDDxxx. The system has more unknowns than
equations, ie. fewer rows than columns.

� In CS, the measurement matrix contains elements from an independently sampled Gaussian
distribution. In SA, the atoms in the dictionary are selected to resemble the structures of the
input signal and it can be either predetermined or trained from a set of realizations of the
real signal. A predetermined DDD can be constructed using the same types of measurements
as in CS (Wavelet, Fourier etc.), where training usually happens at runtime. This is also
called dictionary learning.

� In CS, ΦΦΦ is nondeterministic and random in nature. In SA, the dictionary DDD is often a
deterministic, unalterable matrix, which leads to different considerations and analysis than
with CS. As an example of SA, in statistical model selection, the matrix contains response
variables from a statistical study (answers, feedback) with some sparsity since only a few
regressors (columns) are significant.

3.5 Sparse approximation

Sparse approximation is a technique to find good recovery of unknown signal vectors that are
known to have a sparse representation in some domain [53] [54] [41]. In this context, sparse means
that the length of the original signal is larger than the number of non-zero coefficients in the
recovered version. Input signals can be sampled from a variety of sources, like acoustic signal
bands, a large set of natural image patches or compressed data that have been undersampled from
a medical imagining system. Sparse approximation is done by using various linear combinations of
the same elementary signal, that typically model different coherent structures in the input, so that
we can transform the original signal in an appropriately recovered sparse version, using as few of
these elementary signal vectors called atoms as possible [53] [54]. We typically choose the atoms
from a large linearly dependent collection, called a dictionary, that can be either predetermined
or trained based on the input signals [55] [11]. Using a predefined dictionary of elementary signal
vectors, such as the Fourier, Haar or Wavelet bases, are sufficient in most recovery cases and
often simple to deploy. However a dictionary that has been trained on a sample set of some data
that shares the structure of that it needs to recover can improve the speed and accuracy in a
recovery problem compared to a traditional predefined dictionary [56] [11].

Sparse approximation finds use in areas like denoising, image compression, transform coders
like JPEG2000[19] or classification [39] where we want to reduce noise in a recovered signal
through sparsity, apply compression to only preserve the most significant coefficients in a signal
or correctly classify a sequence of letters based on learned sparse signals. These methods are
useful in big data scenarios like many modern machine-learning based applications or in systems
that process data from social networks.

3.5. SPARSE APPROXIMATION 25

Also computers that rely on battery power and have high networks communications cost, like
a wireless sensor network (WSN), could benefit from only sending and receiving signals that have
been made sparse yet still contains all the information necessary [28]. Today’s world sees a wide
usage of sensors and Internet of things (IoT)-technology in construction work, in the health care
sector and in everyday consumer amusement, that demands low battery consumption, a high
throughput and real-time data feeds. Methods are needed that can reduce the complexity of
ever-growing signals whilst maintaining transparency and essential information structures. To
understand how sparse approximation works, we first look at linear inverse problems.

Linear inverse problems is an emerging field in mathematics and engineering as it allows us
to understand the parameters and aspects of problems, that cannot directly be observed. An
inverse problem starts with a set of observations (effects) and then calculates the factors that
produced them (causes). The inverse is called a forward problem. Interestingly, these problems
often cannot provide exact solutions from estimates, as they are not computationally viable. We
can therefore rely on techniques that can either reduce the dimensionality of these unknown
parameters, lower the number of iterations required or find an approximation of the exact solution
that we can accept. In digital signal processing, sparse approximation (SA) is an inverse problem
that starts with the observations yyy and a predetermined or trained knowledge base about the
original signal, called the dictionary DDD, and then approximates x̂̂x̂x as an approximation of xxx by
a linear combination of elementary or trained signals in this dictionary. We do this to either
compress the original signal xxx by saving only its nonzero coefficients x1, x2, . . . , xK given that
xxx ∈ RN has a sparse representation in a lower dimension or to reliable recover this approximation
x̂̂x̂x of xxx. If xxx has been subjected to random induced noise, jitter from a faulty radio receiver or
other kinds of degradation we want to recover a noiseless version by finding the solution x̂̂x̂x to a `0
minimization problem subject to yyy = DDDx̂̂x̂x as a noiseless version of x, assuming it has a sparse
representation. In the multi measurement vector (MMV) model by [41], we have Q > 1, let
YYY = [yyy1 yyy2 · · · yyyQ] denote the observed data vector as:

YYY = DDDXXX +EEE (3.22)

i.e. yyyi = DDDxxxi + εεεi i = 1, 2, . . . , Q (3.23)

where DDD =
[
ddd1 ddd2 · · · dddN

]
=
[
ddd1 ddd2 · · · dddM

]T
(3.24)

Dictionary DDD usually has fewer row vectors than column vectors and is overcomplete, i.e.
it contains redundant data, XXX = [xxx1 xxx2 · · · xxxQ] are the unobserved signal vectors and
EEE = [εεε1 εεε2 · · · εεεQ] are unobserved noise vectors. In the MMV model [41], we write the matrix
model of our system of equations as YYY = DDDXXX +EEE which can be formulated as a minimization
problem:

min
XXX∈RN×Q

‖ YYY = DDDXXX ‖2 ≤ ε subject to ∀i, ‖ xxxi ‖0 ≤ K (3.25)

is the general linear problem with an exact constraint that is often relaxed:

min
XXX∈RN×Q

‖ YYY −DDDXXX ‖2 ≤ ε subject to ∀i, ‖ xxxi ‖0 ≤ K (3.26)

where YYY = [yyy1 yyy2 · · · yyyQ] ∈ RM×Q, XXX = [xxx1 xxx2 · · · xxxQ] ∈ RN×Q.

3.26 is the conventional least-squares (LS) minimization problem of the residual matrix. Such
problems as 3.25 and 3.26 are well studied in literature and there exist many practical methods to
solve them. When only a single signal vector is present (Q = 1), the MMV model reduces to the
single measurement model (SSA) used in traditional CS and SA. The goal in MMV is similar to
standard signal recovery in section 3.3, but instead of recovering the sparse signals xxxi separately,

26 CHAPTER 3. SIGNAL PROCESSING THEORY

we attempt to simultaneously/jointly recover all signals at once [41]. The key assumption is
that the nonzero values of XXX occur at a mutual location set, i.e. the matrix XXX is assumed to be
K-rowsparse, which means at most K rows in XXX are nonzero. Formally put, the row-support of
XXX is less or equal to K:

rsupp(XXX) = i ∈ 1, 2, ..., N : xxxij 6= 0 for some j ≤ K (3.27)

We have previously denoted this as the quasinorm of XXX that counts the number of nonzero
elements. With joint estimation we can potentially get better recovery results by leveraging
the assumption that signal vectors share a common support set [53] [54]. Our objective can
then be accordingly formulated using the MMV model [41]: Find a row sparse approximation
of the signal matrix XXX based on the matrix YYY , the dictionary DDD and the sparsity level KKK. The
optimization problem in 3.26 that does so is NP-hard, therefore approximation algorithms have
been developed that exploit the joint sparsity in different ways. Two notable categories are convex
optimization methods (basis pursuit denoising, in short BPDN) and greedy pursuit algorithms.
The first method considers problems in penalized (Lagrangian) form and replaces the nonconvex
`0-quasinorm in 3.26 of the signal matrix with the convex `p,1 norm, which enforces row sparsity
in the solution. For an appropriate Lagrange multiplier λ, we then turn the solution to 3.26 into
an unconstrained optimization problem with the updated matrix norm either using `∞,1 as Tropp
et al. did in [53]:

min
XXX∈RN×Q

‖ YYY −DDDXXX ‖2 + λ ‖XXX ‖∞,1 (3.28)

which applies the `∞ norm to the rows and `1 to the resulting vector, or using the `2,1 norm as
Malioutov did in [57]:

min
XXX∈RN×Q

‖ YYY −DDDXXX ‖2 + λ ‖XXX ‖2,1 (3.29)

which applies the Euclidean norm to the rows and `1 to the resulting vector.
λ in 3.28 and 3.29 is the Lagrange multiplier and a function of DDD, YYY and EEE. It is basically

a fixed penalty term that we specific beforehand which determines the level of sparsity in XXX.
The higher λ, the more impact the error term has in the minimization problem. If λ = 1 in 3.28
and 3.29, the equations reduce to 3.26 with only the quasinorm replaced by a mixed norm term.
Such formulations as 3.28 and 3.29 are often called the multivariate LASSO solutions [41]. The
LASSO (least absolute shrinkage and selection operator) was in fact invented by researchers in
statistics for model selection purposes at the same time basis pursuit came to light for signal
processing purposes [46, chapter 5.3.3]. Even though the LASSO in statistics and BPDN in
sparse approximations target different applications, they have the same mathematical formulation
and end goal, for example compare 3.26 to 3.28 and 3.29. The latter make use of the `2,1 norm
which is considered more robust to outliers or dependent heavy-tailed noise since the error of each
data point (the column) is not squared. Adding to that, a known problem with least squares
minimization in 3.28 and 3.29 is the strong weight that the Euclidean `2 norm places on large
residuals and the very small weight it places on small residuals. This means that large outliers
can have a large impact on the result.

The second notable category is greedy pursuit algorithms. They work by iteratively comparing
different correlations between a selected subset of atoms (columns of DDD) with the current residual
matrix and then updating the row support with the atom (column) that can reduce the residual
the most as in 3.26. These algorithms have a built-in greediness that keeps adding atoms as
long as the residual `2 error YYY −DDDXXX decreases and rsupp(XXX) ≤ K. They typically require a
real valued K as a fixed hyperparameter, thus the optimal number of atoms or sparsity level
may require iterative tries to find, but is often easier to compute than the optimal irrational

3.5. SPARSE APPROXIMATION 27

penalty parameter λ for the LASSO variants in 3.28 and 3.28 [41]. Greedy pursuit algorithms
are known for being efficient, fairly simplistic and provide good approximations of sparse signals
as proved by [26]. Numerical experiments have also shown that greedy algorithms can perform
better than BPDN in some cases [27], however they fall short when two atom vectors dddi and dddj ,
that correspond to active signals yyyi and yyyj , are both close to a third atom vector dddk. If yyyi ≈ yyyj ,
the cross-talk onto the dddk atom is larger than the hidden signals onto dddi or dddj , therefore a greedy
algorithm updates xxxk rather than xxxi or xxxj . Once such a mistake is made, a greedy algorithm
never recovers [58, chapter 7.3].

The design of sparse recovery methods should be guided by a list of requirements that tell us
if a certain method is viable or not. We compiled a short list here:

� Minimal number of measurements: The sparse recovery algorithm should only re-
quire the same measurements M to recover a K-sparse signal. Any excessive needs for
measurements may prolong sampling times, increase time complexity and take up more
space.

� Performance: Any algorithm should meet some guarantee in terms of recovery accuracy
and stability. In section 3.2 we mentioned prerequisites like incoherence, the RIP or the
NSP on ΦΦΦ or DDD, for exact or approximate recovery of any signal xxx. Obviously the choice of
ΦΦΦ or DDD plays an important role as well. Possible error metrics include mean squared error
(MSE), Hamming distance or probability of exact recovery (PER). On a final note, added
noise or perturbations of the input signal should not throw the algorithm off balance.

� Sparsity: We want to recover a signal from either clear or noisy measurements using as few
elementary signals or atoms as possible to keep the dimensionality low and the signal sparse.
Recall that some applications rely heavily on the low sparsity in a signal like the image
compression format JPEG or nodes transmitting data over a limited network bandwidth.

� Speed: Our algorithm should converge towards an approximate solution within some
expected time frame. This of course needs to count in complexity, signal size and expected
error. Also one should adopt a common stopping criteria when comparing algorithms like
thresholding the error or execution time.

� Scalability: Since we base our work on the MMV model, that is we make jointly sparse
approximations from multiple signals, it becomes even more interesting to evaluate aspects
of scalability in an algorithm and how a task can be shared amongst distributed computers.
Cloud computing and online distributed services are the talk of the town, so naturally any
approximation algorithm should consider this too.

To summarize, subset selection problems that select a subset of size k atoms from a total of
n possible to optimize some criterion are generally NP-hard [59]. Basis pursuit algorithms, in
short BPDN like the LASSO from statistics, the iteratively reweighted least squares (IRLS) [46,
chapter 5.3.2] and the least-angle regression (LARS) [46, chapter 5.3.3] finds an XXX that solves a
undetermined system of equations YYY = DDDXXX via an exhaustive search for an ideal combination of
atoms that minimize the error. These are also called relaxation methods because they usually
replace the set size constraint (i.e., `0 norm) with a convex relaxed constraint `1 [46, chapter 3.2.1].
A greedy strategy, most often implemented by the well-studied and efficient orthogonal matching
pursuit (OMP) algorithm and the likes, abandon this kind of search and instead finds a series of
local optimal updates that would reduce the error the most [46, chapter 3.1.2] [60]. Generally,
the OMP isolates parts of the signal that are coherent with respect to a given dictionary and
use these for reconstruction. An obvious weakness of the greedy approach is that the process
of selecting an atom is sub-optimal: Our residual at a current iteration tells whether to select

28 CHAPTER 3. SIGNAL PROCESSING THEORY

an atom or not and once it has been selected, it cannot be removed. We can end up with a
set of sub-optimal atoms selected at an early stage that are not correlated and the algorithm
will therefore converge to a poor result. To avoid ending up in this sub-optimal blind alley our
dictionary needs to represent the structures in the signal we want to approximate. Next section
will review the theory behind creating a robust dictionary that can model any data and also
compare this approach to the traditional analytic learning method using predesigned transforms.
The OMP algorithm can be seen in appendix F.

3.6 Dictionary learning in sparse approximation

Many use cases in computer vision, image and acoustic processing are preceded by identification
of geometric features in image and audio signals that are important to comprehend and process it.
As the amount of data available in today’s age grows excessively, in what is coined the big data era,
and due to memory and storage constraints of most processing systems, we need ways to process
and understand images and audio signals of high-dimensionality without an immerse overhead
and poor throughput. This is the working methodology in sparse approximation as we have seen
and also what we seek in a subfield of sparse approximation called dictionary learning. Recall that
in order to recover an approximation of signal XXX from YYY sampled measurements, we solve the
linear inverse problem YYY = DDDXXX for XXX. In the general case using what is called a dictionary that
basically guides the recovery process in using the best non-zero transform coefficients because it
contains a database of the geometric features, in the data of interest. Gauging recovery success
can then be done by examining the level of sparsity in the recovered representation, or use a
reference signal to estimate the error. The area of dictionary learning deals with designing such a
guidebook.

Dictionary learning is a nonlinear data-centric training framework, emerged over recent years,
that records geometric structures in data signals (acoustic, audio, natural images etc.) [11]. The
assumption is that samples, in for example image patches, can be sparse approximated by a
linear combinations of a few columns in a suitable overcomplete basis (a dictionary) [61]. Let
YYY ∈ RM×Q be a matrix of vectorized image patches, then each patch yyyi ∈ RM has a sparse
representation in a dictionary DDD ∈ RM×N if YYY ≈DDDXXX and the number of non-zero row entries in
XXX ∈ RN×Q is smaller than the number of column atoms in DDD ∈ RM×N [61]. The dictionary DDD is
then a dimensionality reduction or sparsifying step that can either be created by a predefined
model, such as wavelets [16], curvelets [62] or it can be learned from data [11] [13] [38].

Using a predefined dictionary such as the Fourier, Haar or DCT bases are sufficient in most
recovery cases and they are often simpler to employ than making a new from scratch. However
to improve the speed and precision in a recovery problem, a dictionary that has been trained
on a sample set of some data, that shares the structure and characteristics of that it needs to
recover, is often better than traditional predefined dictionaries. A learned basis is shown to have
better coding efficiency and also have better presentation power than traditional bases in many
applications [56]. Since predefined dictionaries do not adapt to the underlying structure in the
images, they do not always result in best image representations [11]. This does not mean that a
learned dictionary is always better than a predefined one, in fact a learned dictionary is often
limited in the sense that it will only work for a specific problem, where the traditional ones work
in a more general matter. In particular with big data, in a setting of ever-accumulating data sets,
it may not be feasible to use all available images to build representations or learn features. This
indicates that if a dictionary can be quickly and efficiently trained at the start of recovery, or
adaptively as the reconstruction process proceeds, it could potentially outshine the predefined one,
given data structures do not change drastically, and our systems can process the dimensionality
in the data we present them. Another case when dictionary learning can be applied is when it is
unknown or lost and therefore needs to be re-estimated in order to re-create the original data

3.6. DICTIONARY LEARNING IN SPARSE APPROXIMATION 29

through sparse approximation.

To provide a mathematical overview of the core question in dictionary learning, the optimization
problem can be written as seen in 3.30 [46, chapter 12.2.1]. Suppose we have been given a set of
Q vectorized images YYY = [yyy1 yyy2 ... yyyQ] ∈ RM×Q, where M is the dimension of each image. The
problem of learning a dictionary of N atoms that can be used for sparse approximation given the
measurements YYY can be expressed in a form for each training signal yyyi and coefficient vector xxxi:

min
DDD,{xxxi}Qi=1

Q∑
i=1

‖ xxxi ‖0 subject to ‖ yyyi −DDDxxxi ‖2≤ ε, 1 ≤ i ≤ Q (3.30)

xxxi represents a coefficient vector for the individual signal, yyyi represents a training signal,
DDD ∈ RM×N is the overcomplete dictionary (i.e. N > M) with `2-norm columns and ε represents
the model deviation or error. The intention is to estimate DDD, assuming that the deviation ε is
known. If a solution is found with exactly the cardinality K or fewer entries, it is a feasible model.
With this knowledge, 3.30 can be reformulated by reversing the penalty and constraint for a case,
where the sparsity needs to be constrained. The formula can be seen in 3.31 [46, chapter 12.2.1].

min
DDD,{xxxi}Qi=1

Q∑
i=1

‖ yyyi −DDDxxxi ‖22 subject to ‖ xxxi ‖0≤ K, 1 ≤ i ≤ Q (3.31)

Both equations 3.30 and 3.31 can be rewritten to a simplified form by concatenating all vectors
column-wise, resulting in YYY forming an M ×Q matrix and XXX forming an N ×Q matrix. The
resulting equations can be seen in 3.32 and 3.33 in what is the general form of dictionary learning:

min
D,XD,XD,X
‖XXX ‖0 subject to ‖ YYY −DDDXXX ‖2≤ ε (3.32)

min
D,XD,XD,X
‖ YYY −DDDXXX ‖22 subject to ‖XXX ‖0≤ K (3.33)

With the core questions defined in equations 3.30-3.33, and prior work showing that exact
determination of sparsest representations prove to be an NP-hard problem [63], we can now look
at two established dictionary learning algorithms; MOD and K-SVD. These two algorithms does
the very same thing, learn a dictionary from training data, but with very different approaches.

The method of optimal directions (MOD) is a dictionary learning algorithm that aims to
estimate the dictionary DDD only through the knowledge of the signals YYY and the original cardinality
K. The algorithm start by making a dictionary DDD(0), which is constructed of random entries of

{yyyi}Qi=1. Step 1: Sparse approximation; using the knowledge of equation 3.31, the sparse signal
representation x̂̂x̂xi is approximated, 1 ≤ i ≤ Q, through the use of a pursuit algorithm, by using
the randomly generated dictionary DDD(0) as a fixed dictionary. Step 2: Dictionary Update; update
the dictionary, DDD(k), with the new XXX(k) formed by the newly acquired x̂̂x̂xi, 1 ≤ i ≤ Q. This is done
using equation 3.34 [46, chapter 12.2.2].

DDD(k) = argmin
DDD
‖ YYY −DDDXXX(k) ‖2F

= YYYXXXT
(k)(XXX(k)XXX

T
(k))
−1

= YYYXXX†(k)

(3.34)

Step 1 and 2 will then be reiterated, until the stopping rule is satisfied. The stopping rule
is when the changes in the error ‖ YYY −DDD(k)XXX(k) ‖2F is small enough. The MOD algorithm
cannot promise to reach a global minimum, but tests show that the algorithm is very effective at

30 CHAPTER 3. SIGNAL PROCESSING THEORY

� ∈� ℝ
�×�

⋯

��1
��2

��3
��4

���

= ×

� ∈� ℝ
�×�

∥ � − �� s.t. ∥ � ≤ �min
�,�� �

� �� ∥2
2

� ∥0

⋯

��1
��2

��3
��4

���
Core Problem:

� ∈� ℝ
�×�

Figure 3.4: A practical example of dictionary learning for denoising. The noisy picture represented in
the red block is divided into individual patches illustrated as vectors; yyyi. These patches form
the matrix YYY = [yyy1 yyy2 · · · yyyQ]. With a dictionary learning algorithm, such as MOD or
K-SVD, minimizing the core problem will yield a dictionary DDD, the yellow block, as well as a
sparse representation of the patches XXX = [xxx1 xxx2 · · · xxxQ], the blue block. The dictionary is
constructed of the most significant structures of the patches and the least significant ones are
thrown away. If the noise is indeed randomly generated, this means there is no structure to
it, and that will be the first to be discarded. Using data the matrices DDD and XXX the image can
be reconstructed without the noise.

estimating the original dictionary [11] by an approximation. The complete MOD algorithm can
be seen in appendix F.

K-SVD is an algorithm that builds on knowledge from the clustering method K-means and
is basically made as an extension of said algorithm. It is a versatile algorithm that works using
any sparse approximation algorithm, it has the same sparsification problem as MOD and uses a
similar two-step approximate-and-learn approach. That is, K-SVD alternates iteratively between
sparse approximation of the input signal using the current dictionary and an update process of
the dictionary atoms using the singular value decomposition (SVD) method to fit the data from
the sparse approximation step. Because of the high non-convexity of the problem in 3.33, it is
impossible to promise that the K-SVD will reach a global minimum and can get caught in local
minima or even saddlepoints, however tests show that the algorithm is very effective, even more
so than the MOD at approximating the original dictionary [11].

The main contribution of K-SVD is that the dictionary update step is performed sequentially
atom-by-atom in a simple fashion instead of using matrix inversion as in the MOD. Moreover it
adds further acceleration to the process by updating both the current atom and its associated
sparse coefficients simultaneously [64]. This provides a fast and efficient algorithm for dictionary
learning that requires less resources than the MOD. In practice, the K-SVD is an effective method
for representing small signal patches because the result of the training process is a non-structured

3.6. DICTIONARY LEARNING IN SPARSE APPROXIMATION 31

dictionary which is relatively costly to apply to signals of large size [64]. For K-SVD, the dictionary
update method as seen in 3.34 is rewritten in 3.35 [46, chapter 12.2.3].

‖ YYY −DDDXXX ‖2F =

∣∣∣∣∣
∣∣∣∣∣ YYY −

N∑
j=1

dddjxxx
T
j

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∣∣∣∣∣
∣∣∣∣∣ (YYY −∑

j 6=j0

dddjxxx
T
j

)
− dddj0xxxTj0

∣∣∣∣∣
∣∣∣∣∣
2

F

=‖ EEEj0 − dddj0xxxTj0 ‖
2
F

(3.35)

where xxxTj is the j’th row of XXX, and EEEj0 is the error, which can be obtained using SVD. Using

the standard SVD in this case yields some problems in the form of a dense vector xxxTj0 , which is
the result of increasing the number of non-zeros in XXX. To fix this problem, instead of taking the
complete set of the error EEEj0 , only a subset will be taken, to keep the wanted cardinality of the
signals. To do this, a restriction operator PPP j0 is introduced. This operator will be multiplied on
the right side of EEEj0 in order to remove the columns, corresponding to where the entries in the
row xxxTj0 are zero. This is done in order to keep the columns that affects the non-zero values, and
remove the ones that has no effect, thereby keeping the cardinality without losing data. This
results in the restriction definition of xxxTj0 as (xxxRj0)T = xxxTj0PPP j0 . With the new sub-matrix EEEj0PPP j0
an approximation using SVD can be found, updating both the dictionary DDD and the sparse
representations of the signals XXX. The complete K-SVD algorithm is detailed in appendix F.

Another approach is to not use the full SVD and instead use a numerical approach to finding
dddj0 and xxxTj0 proposed on equation 3.36 and 3.37 [46, chapter 12.2.3].

min
xxxRj0

‖ EEEj0PPP j0 − dddj0(xxxRj0)T ‖2F ⇒ xxxRj0 =
PPP Tj0EEE

T
j0
dddj0

‖ dddj0 ‖22
(3.36)

min
dddj0

‖ EEEj0PPP j0 − dddj0(xxxRj0)T ‖2F ⇒ xxxRj0 =
EEEj0PPP j0xxx

R
j0

‖ xxxRj0 ‖
2
2

(3.37)

More recently a novel paradigm has been purposed called parametric dictionary training
that aim to address these issues by combining the strengths of both predetermined and trained
dictionaries. Figure 3.5 is a visual comparison of the two methods. Studies have been done on
synthetic noisy speech data and show that parametric dictionaries can yield a better representation
in terms of mean squared error (MSE) than non-parametric learning methods like the K-SVD
that result in unstructured dictionaries [65] [66].

32 CHAPTER 3. SIGNAL PROCESSING THEORY

Figure 3.5: (a) is a dictionary learned from image patches. (2) and (3) is the overcomplete Haar and
DCT dictionary respectively for comparison. Source: [11].

3.7 Consensus and power iterations

Cloud K-SVD is a distributed version of the K-SVD algorithm that trains a dictionary on multiple
distributed nodes instead of just one. We will get to the mechanics of it in the next section, but
first explain some fundamental theory about it. For cloud K-SVD to work, it needs to reach a
consensus among nodes, which we will start examining from a general point of view.

A major difference between centralized and distributed systems is that we can experience
partial divergence of data in a distributed one, since the systems do not share a global memory
space or clock. Each node has its own private data space and executes requests as a sequence
of sequential or parallel processes. If a group of nodes with the same specifications and the
same preconditions executed the same request, say a web site query, the final result may vary
depending on the resources available to the individual node at runtime, network throughput and
other non-deterministic factors. Computers behave differently and run differently depending on
their environment and configuration.

There exist a fundamental problem in distributed computing called the consensus problem:
It requires multiple processes or nodes in a system to come to an consensus on a single value
for computation. This value or state could be the result of a transaction, the current time of
day or leader-election. Consensus protocols achieve reliability on networks involving multiple
nodes, making sure all nodes conform to the current state of the system. If bilateral computations
are needed, processes must talk to each-other, share their current state via message passing
and somehow agree on one value in the original problem. This operation can spell trouble, as
communication links between nodes may fail or become unreliable, so a consensus protocol must
take this into account. One acclaimed example is the Raft algorithm by Diego Ongaro and John
Ousterhout published in 2014 [67] that works by electing a leader node that has to manage and
replicate a shared log across multiple nodes. The idea with such a joint consensus scheme is
that at any point in time there is only one leader, and if the leader fails, a new one is elected
with a high degree of certainty. This protocols dictate a certain correct state of the system, like
the distributed digital ledger blockchain, where transactions are recorded between people across
many nodes so that the record cannot be altered retroactively without altering all subsequent
blocks and the consensus of the network. We can achieve this by having processes agree on
one majority value, which requires more than half the nodes in a system to reach consensus. A
less strict implementation which does not dictate a final true state but rather an average is the
consensus averaging protocol. This protocol is used in cloud K-SVD to reach consensus about
how the global dictionary should look among nodes. In the next phrases we will explain averaging

3.7. CONSENSUS AND POWER ITERATIONS 33

consensus and briefly touch upon its rigorous older brother, corrective consensus.

Averaging consensus

Averaging consensus [68] works by having nodes collaboratively share their state, for example the
current residual vector in a dictionary learning scenario, then by averaging steer the pool of nodes
towards a mutual averaged consensus. We consider a multi-hop network of a group of H nodes
modeled as a undirected graph G = (V, ε) where N = 1, 2, . . . ,H represents the H nodes and the
edge set ε = (i, j) : i, j ∈ V, pi,j > 0 consists of vertex pairs. A pair (i, j) represents the directed
edge from j to i, which means node j can send traffic to node i. In theory the link is stable and
has no packet loss, however in practice things such as link congestion, node failures and delays
can occur. The averaging protocol assumes that each node i holds some value zzzi ∈ R and that
it must compute the average z̄̄z̄z =

∑H
i=1 zzzi/H using linear distributed iterations [69]. Each node

defines a local state variable xxxi(t = 0) = zzzi and iteratively updates the value with a weighed
average of its neighbors state variables [70]. xxxi(t) converges to z̄̄z̄z under certain conditions [70].
How the actual communication takes place is conceived at the implementation stage, as node i
can either send its state update xxxi(t) synchronously to j and thus wait for a reply, have a second
thread that continuously sends out updates asynchronously or instead have j pull xxxi(t) from i
whenever it needs it. This section concludes with implementation samples of two asynchronous
consensus algorithms. After receiving their neighbor’s state, nodes update their state variables as:

xxxi(t+ 1) = xxxi(t) +

H∑
j=1,j 6=i

WWW ij(t)
(
xxxj(t)− xxxi(t)

)
(3.38)

where WWW (t) ∈ RH×H is a weight matrix defined as WWW (t) := I − εLLL(t), where LLL = [lij] is the graph
Laplacian matrix of the network [68].

Let E(WWW) denote the expectation of the weight matrix WWW . It can be fixed for the entirety of
the algorithm or computed randomly at each iteration to simulate packet loss. If we select the
constant ε to satisfy the constraint 0 < ε < 1/maxi,t(dddi(t)), so the second largest eigenvalue of
E(WWW) is smaller than 1 in magnitude, 3.38 will converge to a common value, i.e. lim

t→∞
xxx(t) = α1,

where 1 is an eigenvector with all entries equal to one, i.e. 1 = (1, ..., 1)T [71]. When the weight
matrix is balanced, i.e. 1TWWW (t) = 1

T then the nodes converge to the correct average α = z̄̄z̄z.

Corrective consensus

Corrective consensus is an extension to averaging consensus and introduces a set of auxiliary

variables φφφ
(t)
ij at every node i used to store the residual difference. It updates them at time t+ 1

as follows [70]:

φφφij(t+ 1) = φφφij(t) +WWW ij(t)(xxxj(t)− xxxi(t)), φφφij(0) = 0 (3.39)

In other words, the accumulated residual difference between node i and j for iteration t+ 1 is
the stored residual variable φφφij for iteration t plus the weight for the node link times the residual
between signal vectors xxxj(t) and xxxi(t), respectively. φφφij represents the amount of change node i
has made to its signal vector xxxi(t) by exchanging data with node j. If we consider only symmetric
packet losses for the link between i and j, it follows from 3.39 that φφφij +φφφji = 0 if WWW ij(t) = WWW ji(t)
holds for all t [70]. Accounting for packet losses, a situation where xxxi(t) is lost at the j end is not
impossible, so we have WWW ij(t) 6= WWW ji(t) and consequently φφφij +φφφji 6= 0, thus we would see a shift
away from the global average ẑ̂ẑz since node j would never take into account the residual in xxxi. To
update state variables xxxi and φφφij , we perform M averaging iterations and at every iteration k
perform a corrective one m times [70]:

34 CHAPTER 3. SIGNAL PROCESSING THEORY

xxxi(k + 1) = xxxi(k)−
H∑
j=1

∆∆∆(i,j)(k)/2φφφij(k + 1) = φφφij(k)−∆∆∆(i,j)(k)/2 (3.40)

where ∆∆∆(i,j)(t) = φφφij +φφφji, that is the accumulated approximation residual between node i
and j. If we assume an asynchronous pull implementation, node i would periodically start up a
separate thread to fetch the φφφji from its neighbors, calculate the difference ∆∆∆(i,j)(t) and adjust
its state variable xi(t) accordingly. If no residual can be retrieved from node j, the algorithm
will simply skip the corrective step for that node and retry after n averaging consensus steps.
Furthermore corrective consensus has been shown by proof to converge to z̄̄z̄z given enough n and
m iterations [72].

Power iterations

We want to calculate the most dominant eigenvector in the residual error via power iterations
and afterwards use consensus passes on all neighboring nodes by multiplying the eigenvector
with some weight to estimate a new approximation, as in 3.38. Assume AAA ∈ RN×N is symmetric,
vector xxx is an eigenvector of AAA with eigenvalue λ if AAAxxx = λxxx. Vector xxx is a dominant eigenvector
if there are no other eigenvectors with an eigenvalue larger than ‖ λ ‖ in absolute value. In this
case, λ is a dominant eigenvalue and ‖ λ ‖ is the spectral radius of AAA. More specifically, the power
method applied in each iteration is defined as: Given a unit 2-norm qqq(0) ∈ RN , the power method
produces a sequence of vectors qqq(k) as follows [73, chapter 8]:

for k = 1, 2, . . .

zzz(k) = AAAqqq(k−1)

qqq(k) = zzz(k)/ ‖ zzz(k) ‖2
λ(k) = [qqq(k)]TAAAqqq(k)

end

(3.41)

If qqq(0) is not deficient andAAA’s eigenvalue of maximum modulus is unique, then the qqq(k) converge
to an eigenvector [73, chapter 8]. A concrete example is the PageRank algorithm [74], named
after one of the founders of Google, Larry Page. It calculates the importance ranking for web
pages. This is based on how many other sites in a connected graph that link to a specific page.
PageRank was the first algorithm used by Google to rank web pages in their search engine, but
not the only algorithm as of today. The iterative method to calculate the PageRank score is a
power iteration that takes an adjacency matrix where MMM i,j represents the link from j to i, a fixed
number of iterations and a damping factor and returns a vector of page ranks such that vvvi is the
i’th rank from [0, 1], where vvv is rescaled so that each column adds up to one for all pages. The
page ranks are the dominant right eigenvector of the adjacency matrix MMM [74].

Jelasity et al. [75] extend the thought behind PageRank as they purpose the use of asynchronous
distributed power iterations in a chaotic dynamic network, where nodes or network links are
added or removed at will. Here, nodes find the dominant eigenvector of large and sparse matrices,
like an adjacency matrix in PageRank, collaboratively by message passing. The adjacency or
neighborhood matrix in this case is fully distributed, meaning the elements of the matrix are held
by individual network nodes, one vector element per one node. Jelasity et al. considers cases
where the dominant eigenvalue differs from one. Figure 3.6 shows asynchronous calculation of the
dominant eigenvector of a weighted neighborhood matrix A and 3.7 shows gossip-based average
approach, where a node connects to basically a random peer and then average the response with
what they currently have. Gossiping is a way in peer-to-peer connected distributed systems to
ensure that data is disseminated to all members of a group. They are further studied in [76, 77].

3.8. THE CLOUD K-SVD AND DISTRIBUTED LEARNING 35

Figure 3.6: An asynchronous power iteration algorithm that calculates the dominant eigenvector of a
weighted neighborhood matrix A at node i [75].

Figure 3.7: An asynchronous gossip-based consensus algorithm. It uses a stochastic model to forward its
vector element to a random node j and averages the return value with the current state [75].

3.8 The cloud K-SVD and distributed learning

We have already discussed how dictionary learning can be done centrally however with the
constraints that big data introduce, where no single system can cope with entire data sets, and
security concerns of many modern data applications like privacy, confidentiality and copyright, it
is evident that dictionary learning should be performed in a distributed manner by a pool of nodes
that offer redundancy, horizontal scalability and local access to data on a individual node basis,
so that no one else will get to access or modify the information. In section 3.7 we accounted for
the various ways that nodes could reach consensus in a distributed system and finally explained
in brief how averaging node consensus works between multiple nodes asynchronously. We set
out in section 1.3 to experiment and evaluate a distributed sparse approximation and dictionary
learning algorithm like cloud K-SVD in a real setup with real data input, however before realizing
the goal, it is important to establish a sound understanding of what cloud K-SVD adds to the
recently discussed K-SVD in section 3.6 and the algorithms that compromise it. Cloud K-SVD is
like regular K-SVD as we described in section 3.6 with basically an added consensus step, where
nodes exchange their current residual coding error to archive a collaborative global dictionary that
best represent the structures in the input data. One way of achieving consensus is by averaging
as described i section 3.7. Cloud K-SVD defines three kinds of iterations, which are important to
keep in mind for the rest of the section and for the experiments later on: The number of overall
iterations td, the number of power iterations tp and the number of consensus iterations tc. For
example by setting td = 1 ∧ tp = 3 ∧ tc = 5 we run the algorithm one time in its entirety with
exactly three power iterations that each include five consensus iterations. In theory, the algorithm
is performed on a undirected graph G = (V, ε) where V = 1, 2, ...,H represents the set of all H
nodes and ε represents edges. Each node has access to its own data, (i, i) ∈ ε and connections
are represented by (i, j) ∈ ε. The following phrases will describe some technical details of the
algorithm.

We assume a distributed setting, where local data is held at different nodes. Each node is
denoted by Hi with local data YYY i ∈ RM×Qi for a total of H nodes, so the total data amount is
Q =

∑H
i=1Qi and can be represented as one matrix YYY ∈ RM×Q [9]. The goal of cloud K-SVD is

for each node H to collaboratively learn the dictionary DDD by solving the minimization problem
that finds the signal matrix using local data, then find the dominant eigenvector denoted qqq using
a power method of the square, positive-semidefinite residual matrix MMM obtained by YYY −DDDXXX

36 CHAPTER 3. SIGNAL PROCESSING THEORY

calculations locally and then at each consensus iteration tc they must reach an estimate of the
value of qqq for MMM where MMM =

∑H
i=1MMM i and H is the total amount of nodes. Since the number of

global samples is larger than the number of samples at each node, collaborative learning should
outperform local learning, where all data has to be processed by every node. Figure 3.8 shows
how global data YYY is distributed at local nodes H.

1 2

3 H

∈��1 ℝ
�×�1 ∈��3 ℝ

�×�3∈��2 ℝ
�×�2 ∈��� ℝ

�×��
⋯

Local Data at Node 3

Global Data

Figure 3.8: In cloud K-SVD, we train a distributed data model based on spatially separated local node
data. Source: [9].

We now go into more detail with the algorithm in algorithm 1. It is essential for our thesis and

therefore included in full here. First step is to compute the local signal matrix X̂̂X̂X
(td)
i using any

sparse approximation algorithm for example OMP at iteration td using the previous dictionary
data from td−1 without collaboration similar to K-SVD. A greedy algorithm like OMP decomposes
a signal into linear combinations, or an approximation of the columns of some dictionary. It is
guaranteed to converge in no more than N steps, where N is the number of dictionary columns
[78]. A convex optimization method like LASSO can also be applied here [21]. The approximation
step is as follows:

∀q, x̂̂x̂x(td)
i,q = arg min

xxx∈RN
‖ yyyi,q − D̂̂D̂D(td−1)

i xxx ‖22 subject to ‖ xxx ‖0≤ K (3.42)

where yyyi,q and x̂̂x̂x
(td)
i,q denote the qth sample and the signal vector at node i, respectively.

X̂̂X̂X
(td)
i =

[
x̂̂x̂x

(td)
i,1 x̂̂x̂x

(td)
i,2 · · · x̂̂x̂x

(td)
i,Qi

]
. It has been shown that computing the sparse coefficients

locally is acceptable at each iteration as long as the dictionary atoms in D̂̂D̂D
(td−1)
i remain close to

each other [9].

Next is the dictionary update step. For this, cloud K-SVD uses a distributed power iterations
model first described in section 3.7 to find the dominant eigenvector denoted qqq of a square,
positive-semidefinite residual matrix MMM [9] we have previously described, which is defined to have
no eigenvalues less than or equal to zero. The power method is denoted as q̂̂q̂q(td) = MMMq̂̂q̂q(td−1), where
q̂̂q̂q(td) is the estimate of the dominant eigenvector and approaches qqq for every iteration (td →∞).
We denote the initial value of qqq as qqqinit and may be a non-zero vector. All nodes begin with
starting vector qqqinit and matrix MMM i [79]. At each iteration of the power method, the nodes reach
a average consensus on an estimate of qqq for the matrix MMM where

MMM =

H∑
i=1

MMM i (3.43)

and H represents the total amount of nodes.

If we apply the power method to MMM , we observe that:

3.8. THE CLOUD K-SVD AND DISTRIBUTED LEARNING 37

Algorithm 1: The cloud K-SVD algorithm by [9].

Input: Local data YYY 1,YYY 2, . . . ,YYY H , problem parameters N and K, and doubly stochastic
matrix WWW

Output: Dictionary D̂̂D̂D.

1 Generate dddref ∈ RM and DDDinit ∈ RM×Q randomly, set td ← 0 and D̂̂D̂D
(td)
i , i = 1, 2, . . . ,H.

// Initialization

2 while stopping criteria not satisfied do // Sparse Approximation

3 td ← td + 1.

4 The ith site solves ∀q, x̂̂x̂x(td)
i,q ← arg min

xxx∈RK
‖ yyyi,q − D̂̂D̂D(td−1)

i xxx ‖22 s.t. ‖ xxx ‖0≤ K

5 for n = 1 to N do // Dictionary Update

6 Ê̂ÊE
(td)
i,n,R ← YYY iΩ̂̂Ω̂Ωi,n −

∑n−1
j=1 d̂̂d̂d

(td)
i,j x̂̂x̂x

(td)
i,j,T Ω̂̂Ω̂Ω

(td)
i,n −

∑N
j=n+1 d̂̂d̂d

(td−1)
i,j x̂̂x̂x

(td)
i,j,T Ω̂̂Ω̂Ω

(td)
i,n

7 M̂̂M̂M i ← Ê̂ÊE
(td)
i,n,RÊ̂ÊE

(td)T

i,n,R

8 Generate qqqinit randomly, set tp ← 0 and q̂̂q̂q
(tp)
i ← qqqinit

9 while stopping criteria not satisfied do // Power Method

10 tp ← tp + 1

11 Set tc ← 0 and zzz
(tc)
i ← M̂̂M̂M iq̂̂q̂q

tp−1
i

12 while stopping criteria not satisfied do // Consensus Averaging

13 tc ← tc + 1

14 zzz
(tc)
i ←

∑
j∈Ni

wwwi,jzzz
(tc−1)
i

15 end

16 v̂̂v̂v
(tp)
i ← zzz

(tc)
i /[WWW tc

1]i

17 q̂̂q̂q
(tp)
i ← v̂̂v̂v

(tp)
i / ‖ v̂̂v̂v(tp)

i ‖2
18 end

19 d̂̂d̂d
(t)
i,n ← sgn

(
〈dddref , q̂̂q̂q(tp)

i 〉
)
q̂̂q̂q

(tp)
i

20 x̂̂x̂x
(t)
i,n,R ← d̂̂d̂d

(t)T

i,n Ê̂ÊE
(td)
i,n,R

21 end

22 end

Result: The desired dictionary D̂̂D̂Dtd
i and associated signal X̂̂X̂Xtd

i , i = 1, 2, . . . ,H

q̂̂q̂q(td) = MMMq̂̂q̂q(td−1) =
(H∑
i=1

MMM i

)
q̂̂q̂q(td−1) =

H∑
i=1

MMM iq̂̂q̂q
td−1
i (3.44)

as in [9] and [10].

Each node maintains a q̂̂q̂q(td−1) that holds the previous error. Consensus averaging is then
used to find the last summation of the above equation. Since the output q̂̂q̂q(t) requires both
consensus averaging and the power method step, the local estimate at each node is affected by
error from both algorithms. If we perform enough consensus iterations tc and power iterations tp,
each node’s estimate of the dominant eigenvector will converge to the true value for the residual
MMM [53]. To compute an estimate of a local dictionary, given by D̂̂D̂Dtd

i ∀i = 1, 2, . . . ,H, to form a

global dictionary estimate given by D̂̂D̂Dtd at iteration td we update atoms dddi,n at each node by
collaboratively finding the total error which that atom must minimize. This requires us to find

local error matrix called Ê̂ÊE
(td)
i,n,R. To do so, we first need to find the indices used by the dictionary

at each node, denoted ωωωn. In this case, ωωωtdi,n refers to the indices used by the dictionary atom

38 CHAPTER 3. SIGNAL PROCESSING THEORY

DDDi,n at iteration td:

ωωω
(td)
i,n =

{
q ‖ 1 ≤ q ≤ Qi,xxx(td)

i,n,T (q) 6= 0
}
∀i (3.45)

where xxx
(td)
i,n,T (q) denotes the qth element of xxx

(td)
i,n,T .

To collectively store ωωω
(td)
i,n we define ΩΩΩ

(td)
i,n = Q × ωωω(td)

i,n as a binary matrix with ones in

(ωωω
(td)
i,n (q), q). Thus we can define Ê̂ÊE

(td)
i,n,R = Ê̂ÊE

(t)
i,nΩΩΩ

(td)
i,n . Ê̂ÊE

(td)
i,n is given with this equation:

Ê̂ÊE
(td)
i,n = YYY i −

n−1∑
j=1

d̂̂d̂d
(td)
i,j x̂̂x̂x

td
i,j,T −

N∑
j=n+1

d̂̂d̂d
(td−1)
i,j x̂̂x̂xtd−1

i,j,T (3.46)

where j is the dictionary atom for 1, 2, . . . , N , except for j = i.
Here we update the atoms in numerical order, as the first atoms that have already been

updated are in iteration td and those that have not yet been updated are in td − 1. Next step

is to calculate the SVD as in K-SVD of Ê̂ÊE
(td)
n,R =

∑N
i=1 Ê̂ÊE

(td)
i,n,R for all nodes to find UUU1,n and VVV 1,n.

Again, we make the following updates:(
d̂̂d̂di,n, x̂̂x̂xi,n,R) = (UUU1,n,∆∆∆(1,1)VVV 1,n)∀i (3.47)

By definition we know that:

x̂̂x̂xi,n,R = d̂̂d̂di,nÊ̂ÊE
(t)
i,n,R = UUU1,nÊ̂ÊE

(t)
i,n,R = ∆∆∆(1,1)VVV 1,n∀i (3.48)

To find an approximation of Ê̂ÊE
(td)
i,n,R, we use a distributed power method to find its dominant

eigenvector. For this to work, Ê̂ÊE
(td)
n,R must be a square and positive semi-definite matrix. This can

be archived by multiplying the matrix by its transpose as in Ê̂ÊE
(td)
n,RÊ̂ÊE

(td)T

n,R and applying the power
method to the resulting matrix defined as:

M̂̂M̂M (td) =

H∑
n=1

M̂̂M̂M (td)
n =

H∑
n=1

Ê̂ÊE
(td)
n,RÊ̂ÊE

(td)T

n,R (3.49)

We then find the dominant eigenvector of M̂̂M̂M
(td)
n . By definition, it is the U1 of Ê̂ÊE

(td)
n,R, since for

any real matrix AAA, the left-singular vectors of AAA are the eigenvectors AAAAAAT . With this in mind,

d̂̂d̂di,n is the result of our distributed power method. We locally compute d̂̂d̂d
(td)T

i,n Ê̂ÊE
(td)
i,n,R to set x̂̂x̂xi,n,R

and lastly set x̂̂x̂xi,n = x̂̂x̂xi,n,RΩΩΩ
(td)T

i,n to place the zeros into the row of coefficients. Now the dictionary
update for one atom is done and when all atoms have been updated, the entire dictionary update
step is complete. The loop repeats for each dictionary learning iteration (td) [10].

Chapter 4

Cloud computing theory

This part of the theory tells the story of distributed cloud computing, its concepts and applications
in section 4.1. Here we provide an appetizer for hot topics in the software industry such as
microservices, containers, the Docker project and Kubernetes, all of which we use in our design
and implementation of cloud K-SVD. Section 4.2 gives a layman’s introduction to microservices
with an example of an e-commerce store provided by C. Gammelgaard in [80], before examining
how we can build and run these microservices in an encapsulated and closed environment using
Docker containers in section 4.3. Finally we introduce an orchestration engine that can create,
start and stop these containers called Kubernetes in section 4.4 that will make up our environment
for all practical experiments.

4.1 Concepts of cloud computing

Cloud computing, as an on-demand availability of computer system resources, offers a scalable
way to allocate more power to an online software solution, better performance as nodes can
work simultaneously and flexibility for re-provisioning, adding or expanding resources via scaling.
Compared to having just a single but performance-decent workstation to a modern cloud network
like Google Cloud or Amazon Web Services (AWS) with seemingly a limitless number of nodes
at your disposal, it begs the question whether we should perform all computation of these
mathematical instruments in the cloud rather than relying on a single computer. In order
to implement cloud K-SVD, something of particular interest are small isolated services called
microservices, the container-based method that the Docker tool offers and a way of managing
these containers in Kubernetes. We will review general cloud development concepts here.

Microservices: A modern version of the service-oriented architecture (SOA) style that
organizes a large application into smaller, isolated and loosely coupled services with a fine-grained
interface and a single responsibility. These smaller entities are self-substantiated and can be
deployed independently of other services, however they often depend on other to perform a task.
This approach improves modularity, parallelizes development as microservices can be developed,
refactored and deployed separately and moreover makes the application easier to understand
as each microservice should only contain the business logic needed for its capability. In our
case, we will split the implementation of cloud K-SVD into several lightweight microservices to
independently scale certain parts of the system.

Containers: Back in the old days, we could only run one application per server and the
open-systems world of Windows and Linux did not have the features to safely and efficiently
run multiple applications on the same server. To the rescue comes virtual machines (VM) and
CPU virtualization technologies that allowed businesses to run multiple applications on a single
server, only with the caveat that these required a dedicated OS which took up a lot of space

39

40 CHAPTER 4. CLOUD COMPUTING THEORY

and resources on a host OS. Google and other have since been using container technologies to
address the shortcomings of the VM model. A container is a lightweight implementation of the
VM model that does not require its own full-blown OS. It simply uses the resources of the host
OS. If a single node runs multiple containers, they would all share the host’s OS. Because a
container is not a full-blown OS, starts times are faster. There is no kernel inside of a container
that needs locating, decompressing, and initializing like a regular OS would, not to forget all
the hardware initializing a normal kernel bootstrap does. The single shared kernel, down at the
OS level, is already started, so containers typically start in less than a few seconds. Usually a
container contains some microservice application source code, the dependencies needed to run it
and a tiny set of OS libraries to communicate with the underlying system. What is smart is that
containers are usually very lightweight, fast, portable and can normally run independently on
either Windows or Linux systems. Modern containers started in the Linux world and Google LLC
has contributed many container-related technologies to the Linux kernel, however this remained
for the few and it was not until Docker came along that containers were effectively democratized
and available to the masses.

Docker: Docker is a container engine and software application that can create, manage
and orchestrate containers and is being developed and maintained by Docker Inc. based on the
open-source project Moby and freely available on GitHub. The engine is what runs containers on
a host OS similar to how the core hypervisor technology ESXi runs virtual machines in WMware.
The Docker client allows developers to create either Windows or Linux images that contain the
application, all the code and dependencies to run it and a set of basic operating system libraries.
One can think of docker images as similar to VM templates - A VM template is like a stopped
VM — a Docker image is like a stopped container. Once Docker has created the image, it is
usually pushed to a repository and later pulled by either Docker itself or Kubernetes to create an
actual container, a runtime instance of an image.

Kubernetes: The word Kubernetes is Greek for ”helmsman”, i.e. the person holding a
ship’s steering wheel, and that is what it does with containers - it creates, manages and removes
them when they are no longer needed. Kubernetes is an open-source container-orchestration
project out of Google that was made public in 2014. It can automate the creation, deployment,
scaling and control of containers or so-called pods in a live environment and uses Docker as its
default container runtime engine. In Kubernetes, the term ”pods” is used to denote a logical
runtime environment for one or multiple containers. It is basically a logical classification of one or
mulitple tightly-coupled containers. A pod then run on one or a multiple of nodes. For developers,
Kubernetes abstracts away the hardware infrastructure and exposes the whole data center as a
single enormous computational resource, see figure 4.1. This way we can deploy and re-deploy
software applications without knowing anything about the actual servers, how many there are,
their operating-system or perhaps quirky node-specific configurations. Everything is just one
endpoint. Even if our application has multiple parts (for example a front-end and a back-end
service), Kubernetes automatically selects the best server (node) to run each service on and
enables them to easily find and communicate with each other.

4.2. MICROSERVICES IN THE CLOUD 41

Figure 4.1: Kubernetes exposes an entire data center as a single resource. The developer merely provides
a list with applications to run and Kubernetes does the rest. Source: [81].

4.2 Microservices in the cloud

Microservices is a software development method that has gained traction in recent years because
of the way it eases development and deployment of application parts at the same time compared
to a traditional monolith program. The way it works it by following a lightweight variant of the
service-oriented architecture (SOA) design style that organizes the application as a collection of
distributed loosely-coupled services. These services are isolated parts of the application (that
is, they contain all the code and dependencies needed to run as one entity) and can be taken
down for maintenance and upgrades at any point in time without affecting the other. They are
self-reliant in case of network partitions, communication delays or service disruptions. They are
often built with a single narrowly-focused capability that a remote API exposes to the rest of the
system. If we think of an e-commerce store like Amazon and break down its capabilities, we may
come up with a list of functionality pieces that can be placed in several separate microservices:

� Receive a list of stock at the warehouse.

� Presenting products in a list to the customer.

� Calculating shipping costs to domestic or foreign addresses.

� Determine if loyal customers are eligible to a bonus.

Next step is to make a microservice for each capability in our list as an individual service
that we can examine, test, run and decommission independently of the other microservices. In
practice, a service often rely on others to accomplish an action, for example if the customer
wants to place an order, it may involve multiple services, but the idea is that they run in their
own separate process and do not influence each other. In a real scenario, often a centralized
API gateway serves user requests by instructing a set of microservices to each perform a specific
task. Any communication between the microservices should favor event-based asynchronous
collaboration over making synchronous remote calls, but this depends on the application and use
case. Some calls like retrieving a list of products can be made synchronous, while maintaining a
bonus database for loyal customers can simply be notified whenever someone purchases a product
that comes with bonus point. A lot goes into the design and develop process of microservices

42 CHAPTER 4. CLOUD COMPUTING THEORY

that we will not cover here, but it should be clear that a microservice is just one of many pieces
that constitutes a large application and that it is responsible for providing a single capability.

This brings us to why the microservice approach is useful for implementation cloud K-SVD in
our thesis: It allows splitting up the application in separate parts, build them as containers and
scale them independently via the Kubernetes management tool. Several characteristics [80] of a
microservice are especially useful in our case:

� It is responsible for providing a single capability. This means that we can place the pure
cloud K-SVD algorithm in a microservice and then rely on that service to provide this
capability. Another microservice could provide other necessary services. This makes the
distributed application a lot more clearer and easier to grasp. This also means that if the
capability or feature we need to scale is in a single service, we need only scale that particular
one and not all the others.

� Is is individually deployable. We can build our application with its dependencies as an
isolated piece of software that can be deployed on its own, for example a preprocessing service
can be deployed without worrying about another unrelated service that does postprocessing
work. Software containers is a way of achieving this.

� It runs in one or more separate processes or threads. This ensures that services will not
trip over each other and can each be evicted from the system by terminating its thread. It
also allows us to monitor resource consumption on a process-level.

� It owns and stores the data that belongs to its capability. This means we can manage a
local data store and how to access it on a per microservice-level, so other services need not
be concerned of this detail. This reduces complexity in our solution, as the service that
does cloud K-SVD should not be burdened by having to know the peculiarities of properly
handling input data.

� It is small enough for a single team. We want to manage and control services of relative
small size, so any changes that should only implicate one particular service will only do
so. If we compare the monolith approach, a change one place may require adjustments and
work another because of tight coupling.

� It is scalable. Especially related to what Kubernetes offer, we want to scale our application
on a capability-level, meaning that if we need more power to help prepare input data, we
can easily power up some more services.

It should be clear by now that microservices is merely a working methodology of how to
compartmentalize an application that has multiple working parts. To work in the cloud, where
infrastructure is often heterogeneous and of an unknown quantity, the next step is to employ a
container approach where our application, dependencies and configuration files are bundled in an
image that contains everything it needs to run. Docker is a tool that can create and run such
lightweight containers, which we will review next.

4.3 Building containers with Docker

Docker is a middleware engine and client toolkit invented by Docker Inc. that can create and run
an application as a whole or in separate parts in a closed environment called a container. It is
basically an abstraction at the application layer that package code, system tools, dependencies
and configuration files together so what when the container is deployed, no local libraries or
certain systems are needed as the application already have what it needs. A running container

4.3. BUILDING CONTAINERS WITH DOCKER 43

uses the OS kernel of its host computer and can share a platform with multiple other containers,
each running in an isolated, consistent and disposable environment in user space. Containers
typically take up less space than traditional VM’s for this reason. The Docker client is a user
interface that can upload commands and application content to the part of Docker called daemon.
The daemon can package application code and everything it needs to run into a image specified
by a Dockerfile. The Dockerfile designates the base image, like a lightweight distribution of Linux
x64, together with all dependencies and a command instruction set for the application when it is
deployed. When the Docker daemon builds the image, a new layer is created for each individual
command in the Dockerfile. After pulling all the layers of the base image and the dependencies,
Docker will add a new layer on top of them and add your application code (for example app.js)
to that. Then it will create yet another layer that will specify the command that should be
run when the image is deployed and executed. The complete image then contains a lightweight
Linux operating-system, all your files and program dependencies, the application itself and the
instruction set that tells the container runtime how it should run it [81]. The process is illustrated
in figure 4.3.

Figure 4.2: A container image consists of layers that can shared among other images. Source: [81].

Image files are often built locally at the developer’s desk, labeled and tagged with the current
release version and then pushed to a image repository like Docker Hub, where a container
orchestration engine like Kubernetes can fetch and deploy them in a live environment. You can
see in figure 4.2 how a final bundled image looks.

The idea with Docker and containers is really about abstracting and masking the complex
underlaying structure of the heterogeneous application interfaces that a program needs, while
providing a simple, accessible and consistent way of creating and running application anywhere.
Say goodbye to manual interventions and quirky software configurations and hello to consistent
application portability. In the next section we will look at Kubernetes, which is a container
orchestration platform that can automate the whole process of fetching built images, deploying
them in a distributed environment and frequently perform health checks on running containers. It
uses a Docker as its default container runtime, which means that every Kubernetes node uses the
Docker runtime to execute a container in. Recall that a container is simply a runtime instance of
an image. Moreover Kubernetes can also manage the computational resources allocated to each
container and scale appropriately if a high demand is suddenly placed on the system.

44 CHAPTER 4. CLOUD COMPUTING THEORY

Figure 4.3: How Docker builds, manages and deploys images. Source: [81].

4.4 Controlling containers with Kubernetes

Kubernetes is an open-source container orchestration engine made by Google in 2014 based
on a decade-old internal system called Borg and later Omega to assist developers and system
administrators manage the vast amount of applications and services Google had running. It not
only simplified development, but Kubernetes helped Google archive a much higher utilization of
their server infrastructure. Because a company like Google maintains and runs servers on such as
massive-scale, even small improvements in resource utilization per device mean a substantial cost
reduction when added up. Today, Google processes 40,000 search requests every second and 3,5
billion searches a day. Over the last two years alone, 90 percent of the data in the world was
generated, so we truly live in a big data era. This is why we need a smart way to utilize the
resources we have, to scale up the number of services when applicable, to run multiple instances of
a service in a single computer and reduce the system overhead by relying on lightweight containers
that have a single capability. Kubernetes makes all of this possible for a modern distributed
system and has since its inception become a hallmark for modern cloud computing. It does
however have a slightly complex architecture with multiple components interacting with each
other in complex ways, which we will try to demystify next. This will provide a summarization of
what Kubernetes is and what it does, not a complete exposition of the architecture. For further
reading, we recommend the book on Kubernetes by Marko Lukša [81].

We have seen a birds-eyes of what is in Kubernetes, basically this cloud of heterogeneous
computational resources that expose a single endpoint for developers to deploy applications to.
At the hardware-level, Kubernetes is composed of many nodes of two types [81], see figure 4.4:

� The Kubernetes Control Plane, which is hosted on a master node and manages the whole
Kubernetes cluster. This is responsible for keeping track of running instances, schedule new
pods and store the cluster configuration.

� Worker nodes that run the containerized applications you deploy in a container runtime
like Docker.

The Control Plane: If we look at the first type, the master node, it consists of four essential
components that make it work. These can run on single computer node or be replicated to

4.4. CONTROLLING CONTAINERS WITH KUBERNETES 45

Figure 4.4: The two essential Kubernetes components. Source: [81].

improve data center resilience. First, the Kubernetes API Server component that allows the
worker nodes to read and update resources in a database in a consistent and reliable manner.
With an API you streamline the access to your database while enforcing things like authentication
and communication protocol. The Kubernetes API Server does the same. Next is the Scheduler,
an integral part of Kubernetes. It schedules your apps by assigning worker nodes to each part of
it. For example an application with a frontend and backend service, it could assign the former to
two running nodes and the latter pod to a single one depending on load. Next is the Controller
Manager, a service that manages cluster functions, handles node failures and performs pod
replication in case of failure or scaling. Lastly we have the etcd, a distributed database that
stores the cluster configuration. The Control Plane manages the cluster, stores the configuration
and keeps track of running nodes. It relocates pod’s if a node fails or reschedules your running
instances to a single node if the demand is low. It does not however run any application code or
answer user requests, this is what the worker nodes are for.

The worker nodes: A Kubernetes worker node runs your containerized application. It hosts
a Docker container runtime that can turn an image into a running instance. You can opt to go
with another engine like rkt, but since Docker was the first container platform to make containers
mainstream, it has become the default runtime in Kubernetes. Next is the Kubelet component, a
node agent that manages containers on its node. It downloads specifications from the API server
and ensures that the containers described in those specifications are running and healthy. Lastly
we have the kube-proxy, which is a network proxy component that maintains network rules. These
allow communication to and from the pods running in the node from network sessions inside or
outside of the cluster. If a pod needs information from the API server, it typically goes through
the kube-proxy.

Examine figure 4.6 to get an understanding of how applications are deployed in Kubernetes.
We start by packing our application into one or more container images, then we push these to a
registry and post an app description to the Kubernetes API server that tells it what container
images to deploy, which are co-located (placed on the same node) and which are not. We can also
specific the number of replicas with want of each pod. Recall a pod is a logical containment of
one or more containers that Kubernetes refer to. Two containers should be put in the same pod
if they are tightly-coupled, like a worker that does cloud K-SVD with its own dedicated storage
service. A pod can be replicated on multiple nodes, but a pod can never span two nodes. Figure
4.5 shows how a typical pod can look with one main container and two supporting containers
for data access. Additionally, the descriptor also says which services should be exposed to both
internal or external clients. When the API server processes the description, the Scheduler’s job
is to schedule containers onto the available pool of workers nodes based on what resources they
require and what is available in the cluster. The kubelet on those nodes then orders the container

46 CHAPTER 4. CLOUD COMPUTING THEORY

Figure 4.5: One example of a pod. It should contain tightly-coupled containers, typically a main container
and a few supporting ones for logging or data access purposes.

runtime (Docker) to fetch the required container images and start the containers. We see in figure
4.6 that the container with an orange circle-shaped image needs five replicas, whereas the one
with a triangle and pentagon inside needs two. The latter is co-located, so it should be deployed
as a pod on the same node.

Figure 4.6: An basic view of the Kubernetes architecture and what the components do. Source: [81].

If a pod needs to collaborate with another pod, it can do so by a simple DNS lookup or query
the Kubernetes API server directly to get either the address of a service that is backed by the
pod it wants to contact or get the address of the pod itself. Services are a way in Kubernetes to
load-balance requests between a pool of pods and decouple the callee from the caller. A service
offers clients a single, constant point of entry to a group of pods that provide the same capability,

4.4. CONTROLLING CONTAINERS WITH KUBERNETES 47

like a website or file server [81]. Depending on client needs, a service can also provide a list of
nodes offering the capability instead of a single endpoint. We should bear in mind that pods are
ephemeral: They may come and go at any time, whether it is because they have been closed
down to make room for other pods, someone scaled down the number of pods or because a cluster
node has failed [81]. This is why it makes sense to add an additional layer between the client and
the pods.

We went with Kubernetes because it is a state-of-the-art platform with a high relevance for the
distributed computing industry and because we can create a containerized application with all our
microservices inside that can be tested and evaluated in a simulated setup and later deployed in
an enterprise-state cluster without changing anything in the application. Kubernetes is platform
agnostic and a container can be deployed anywhere at any cloud provider, be it Google Cloud,
Amazon Web Services or in our own on-premise configuration. The applications are decoupled
from the infrastructure. This makes Kubernetes ideal for testing and evaluating of distributed
systems algorithms built as encapsulated microservices that can immediately be transfered to the
real world. Kubernetes gives us fault-tolerance via self-healing, service scaling based on current or
past load and a better utilization of the hardware because it can calculate performance metrics
on the fly and move applications around freely in the cluster.

48 CHAPTER 4. CLOUD COMPUTING THEORY

Chapter 5

Design and implementation

Up to this point, we have provided a detailed view of the theoretical concepts behind sparse
approximation, dictionary learning and how cloud K-SVD work. This chapter will introduce our
solution design and how we have implemented it to facilitate tests and experiments. Since we
were not able to opt for a fully-fledged cloud solution at for example Google Cloud or Amazon
Web Services, with equipment provided by the university we were able to build an on-premise
simulation setup of a cloud system by installing Kubernetes on four Raspberry Pi Model 4’s.
This way we could easily deploy our microservices (our software) to the cluster as pods, monitor
it in real time and scale the number of pods based on a concrete test scenario. By using an
on-premise system in a laboratory environment, we can evaluate cloud K-SVD without interfering
factors that may arose at a cloud provider, like heterogeneous hardware, unpredictable resource
allocation and eventual network delays that are out of our control, though providers like Google
or Amazon in general provide stable infrastructure components and a managed, production-ready
environment for distributed systems at a considerable cost, of course.

Recall that pods in Kubernetes act like regular computers, you can think of. They process
their own sequence of events, have an equal amount of resources at their disposal and can be
started and stopped independently. Pods run on physical cluster hardware (the Raspberry Pi’s),
which we call nodes. They provide pods with the operating-system API’s and resources like
processing time, OS libraries and memory they need.

5.1 Overall design and solution

To run cloud K-SVD effectively and handle data of large quantities, we chose a layered software
architecture. This means that we decomposed our system into three independent software
components that basically do three separate things: First block (preprocessor) processes all the
incoming training data, divides it in equal-sized data portions and forwards it. Second block
(worker) receives the preprepared data, performs a number of cloud K-SVD iterations, see section
3.8, and forwards the result to the last block in the chain, the third block. The third block
(postprocessor) receives the result and does some postprocessing tasks like aggregates data, saves
statistics and expose all this through a public API we can access from our test computer. Figure
5.1 is the system model.

Figure 5.2 shows a small sequence diagram of the interaction between the preprocessor, worker
and postprocessor pod. It shows all steps in our implementation and the cloud K-SVD protocol
at a high level. The drawing has been simplified a bit, hence data is sent from preprocessor to
individual workers directly, not through each other as it may seem. This is also the case when
data is saved in the end.

49

50 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.1: The system model. We create three different pods: Preprocessor, worker and postprocessor.
By making this distinction, we can define, deploy and scale them independently in Kubernetes,
which allows us to better scale the system by load and performance requirements.

Worker Worker PostprocessorPreprocessor

dispatch	data	and
start	work

load	data

split	data	into	parts

return return

do	sparse	coding

get	residuals

do	sparse	coding

get	residuals

update	local
dictionary

update	local
dictionary

save	results

send	signal	and
dictionary

returnreturn

Figure 5.2: A brief sequence diagram that demonstrates how data is loaded onto two workers. Cloud
K-SVD is then started and at the end a signal matrix and a local dictionary is produced that
we collect at the postprocessor pod.

5.2 Cluster considerations and operating-systems

The main purpose of the system is to facilitate a solution to our main problem: Evaluate how
cloud K-SVD can be used for dictionary learning and approximations, see 1.3. This means a
long list of experiments have to be performed for different kinds of input data and for certain
parameters of the algorithm. Other studies that tested cloud K-SVD [15] [32] [9] relied on virtual
machines (VM) or the Python MPI library when testing distributed aspects, however the problem
of using virtual machines on a single computer is that eventual problems in communication links
are not exposed and even though modern computer systems have multi-core processors, it is far

5.2. CLUSTER CONSIDERATIONS AND OPERATING-SYSTEMS 51

from the same. Evaluating an algorithm across multiple virtual machines but on the same CPU
die is much different than evaluating it across several independent systems, that work together.
In reality, communication delays exist since data packets have to be put, transmitted and received
over actual wires, multiple processing units have to work simultaneously and collaboratively by
message passing exchange data, which is asynchronous in nature, and other variables just to
mention a few of the factors that play a role in a distributed system. Furthermore, testing such an
algorithm in a centralized computer makes it impossible to show and evaluate the strengths of real
horizontal hardware distribution and scaling in terms of processing time, memory consumption
and load. These are reasons we opted for a real distributed system to evaluate cloud K-SVD.

We conduct all experiments in this thesis using a Linux Kubernetes cluster installed on
four Raspberry Pi’s. These are nodes in the system and can host multiple Kubernetes pods of
type preprocessor, worker or postprocessor. In appendix B, all the configuration is explained
and how the cluster is configured technically. By using an on-premise system in a laboratory
environment, it allows us to easily monitor and evaluate essential parts of the algorithm in a live
distributed system without interfering factors that may arose at a cloud provider. We decided to
use Raspberry Pi’s as the hardware platform because of their low expenses, they are easy to come
by and have a straight-forward configuration procedure. A Raspberry Pi is a small single-board
computer ideal for prototyping, learning and making low-cost distributed systems when bundled
together. Furthermore the platform has become a household name in the field of IoT-computing.
The Internet offers lots of guides on how to get them configured and running with Kubernetes
and other kinds of applications, if that is of interest. We did a preliminary investigation of the
pros and cons of various Linux operating-systems for Kubernetes and made several installation
attempts on all of them. This produced some findings we have included as well in table 5.1, where
different operating-system options are listed for comparison. Note that all support Kubernetes
(K8S), but vary in documentation and ease of setup. Our findings here are mostly empirical
learnings that can benefit future studies that want to use Kubernetes and Docker.

The most suited operating-system was not the only factor, we took into account, however.
We discovered two kinds of installation media for Kubernetes, namely K8S, which is the original
full-blown version that uses kubeadm and Docker, and a more lightweight one called K3S, that
comes with less preinstalled packages, ideal for IoT-setups and low-cost hardware. Table 5.2
shows a comparison of the installation media:

Because of the low-cost of Raspberry Pi nodes, their widespread use in IoT-systems, the
lightweight nature of K3S and its ease of setup, we decided to create a cluster that consists of
four Raspberry Pi model 4 nodes using Raspbian Lite as the operating-system and K3S as the
Kubernetes installation version. The complete setup procedure, configuration and hardware list
can be found in appendix B on page 109.

52 CHAPTER 5. DESIGN AND IMPLEMENTATION

OS Pros Cons

HypriotOS 32bit Designed to run Docker natively
and requires only a few configu-
ration steps to run Kubernetes.

Documentation on HypriotOS is
unfortunately limited as of this
writing and the distribution has
not seen widespread recognition.

Raspbian Lite 32bit Easy to setup and is the official
OS for Raspberry Pi devices. Is
well documented and tested.

Not configured nor ready for a
Kubernetes installation out of
the box. A lot of manual work
has to be put in to make it com-
patible with a Kubernetes instal-
lation, in our experience.

Arch Linux 32/64bit. Smallest OS of all that we evalu-
ated. Has the ability to be cus-
tomized to suit a particular need
and comes with a 64bit version
as well as 32bit.

The configuration process is very
time consuming. A lot of Linux
specific knowledge on how to in-
stall certain packages and per-
form Docker network configura-
tions is required.

Ubuntu Server 32/64bit. Popular OS for servers. A lot of
documentation exists and is easy
to get started with.

Not made natively for Raspberry
Pi’s, although a version exists for
IoT-devices.

Table 5.1: The pros and cons of the Linux distributions we evaluated for Kubernetes use.

Kubernetes Pros Cons

K8S Official open-source Kubernetes distri-
bution with good and elaborate docu-
mentation that is readily accessible.

Originally designed for large-scale
distributed computing systems and
enterprise-level servers, like the Ama-
zon AWS or Google Cloud Engine, not
for a small Raspberry Pi cluster.

K3S A Lightweight bare-bones version of Ku-
bernetes, made for small clusters, thus
it ships with an very quick installation
procedure ideal for our purposes.

Documentation is limited.

Table 5.2: The pros and cons of the Kubernetes media we evaluated. K8S is the default installation
version from official repositories meant for AMD64 architectures, where K3S is a lightweight
Kubernetes installation meant for IoT-appliances like ARM64/ARMv7 architectures and other
resource-constrained systems.

5.3. IMPLEMENTATION DETAILS 53

5.3 Implementation details

In this section we explain some technical details about the cluster, put words on the software
libraries we have used and other implementation details. Figure 5.3 is an overview of the final
Kubernetes cluster and illustrates pod entities and data flow.

The following phrases are short technical notes about pod configuration and design choices.
Note we use a single preprocessor and postprocessor pod in all experiments for simplicity, but
their numbers can be scaled if needed for the application at hand.

Service
80:8081

API DB

API DB

API DB

API API DB

Kubernetes APIDNS

:80 :8081

:8080

:8080

:8080

Kubernetes Cluster

/start_pods/

/start_worker/

/send_result/
:8082

 Preprocessor Pod

 Worker Pods

 Postprocessor Pod

 Kubernetes Pods

 Kubernetes Service

Figure 5.3: A graphically overview of the Kubernetes cluster. For all experiments, we use this three-
layered setup with a single preprocessing pod, multiple worker pods scaled accordingly and
finally a single postprocessing pod. Data arrive at the service that fronts the preprocessing
pod and is then distributed to worker pods. These workers run our implementation of cloud
K-SVD and collaboratively reach a consensus of a final dictionary and signal matrix that best
represent the data they were trained with. All pods can query the Kubernetes API for cluster
information as well as a CoreDNS pod to resolve service hostnames. Some pods contain a
utility container for data storage as well.

Service pod: The service pod fronts the single preprocessing pod and maps incoming HTTP
requests on port 80 from the external LAN to an internal target port 8081. All requests to the
service will be forwarded accordingly to this configuration defined in an iptables list.

Preprocessing pod: Uses the Python AIOHTTP library to receive and handle asynchronous
HTTP requests forwarded to it by the front service. The pod offers a single endpoint that takes
initial data as a HTTP body and forwards this in parts to the worker pods participating in the
algorithm. It queries the secure Kubernetes API by token authentication for pod lists. The
preprocessor is data agnostic.

Worker pods: Consists of two containers: A Python application that uses AIOHTTP and
AIOREDIS libraries to receive and handle asynchronous HTTP requests to start algorithmic
work made by the processing pod, and a Redis database where it can store intermediate data like
the residual vector for cloud K-SVD as well as computed results statistics and final result data.
Redis1 is an open-source key-value database perfect for storing non-relational data. We use the
NUMPY library for all matrix and vector computations. Workers exchange information using the
AIOHTTP web client that comes with the Python package and these exchanges are asynchronous

1https://redis.io/

https://redis.io/

54 CHAPTER 5. DESIGN AND IMPLEMENTATION

as well. At any point in time can a worker request the residual or status of another worker, since
each request including the one from the preprocessor is handled in individual threads. Like the
preprocessing pod, the workers query the Kubernetes API for lists of fellow worker pods. We set
specific parameters for cloud K-SVD and data communication as environment variables made
possible by the Kubernetes Downward API2.

Postprocessing pod: Provides a AIOHTTP web API to receive processed data from worker
pods. If data has been separated at the start of processing, it is reassembled at this pod. Eventual
data aggregation takes place here as well. Its technical details mimic those of the processing pod
since it relies on AIOHTTP for web API services.

All API interfaces can be found in appendix C. The Dockerfiles for the project can be found in
appendix D. The deployment configuration files can be found in appendix E. We use Dockerhub.io
as the default repository for all Docker images and GitHub.com for source code. Below is a short
list of software library versions.

� Node architecture: linux/ARMv7

� Node operating-system: Raspbian Lite 32bit

� Kubernetes version: v1.16.3-k3s.2

� Docker version: 2.1.0.5 (stable)

� Python version: 3.7.4 32-bit

2https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/

Chapter 6

Experiments and results

This chapter details practical experiments and results of using cloud K-SVD to approximate
various signals, learn a mutual dictionary in a distributed system and denoise both benchmark
and medical images. With practical experiments we address the problems raised in the problem
definition, see 1.3. We will benchmark cloud K-SVD’s accuracy in recovery of sparse signal vectors,
execution times and how well we are able to scale the algorithm to multiple worker pods (logical
computing entities running on real nodes) in Kubernetes, whilst maintaining data separation at
each node. Thus in a real scenario, to collaboratively archive a global dictionary to effectively
reduce the residual coding error at every site, the pods must perform a number of consensus
iterations to accommodate for either approximate or remote training residual errors. A set of
experiments will be conducted to analyze the behavior of the cloud K-SVD algorithm, realized on
a small scale IoT-system.

6.1 Introduction to experiments

In the first round of experiments, synthetic data signals are used to demonstrate efficacy of cloud
K-SVD for proper dictionary learning and data representation. Such signals are generated as
a sparse combination of predetermined dictionary elements from a random distribution. In the
second round, we evaluate cloud K-SVD performance when training a distributed dictionary
on samples from a set of ten natural images. Here, data is appropriately divided between the
number of pods in a given experiment at the input level and we measure their ability to learn
and approximate signal vectors based on data with common geometric structures. In the third
round, we return to our base case to motivate an application of cloud K-SVD that can benefit
from distributed learning collaborative between sites as we evaluate our implementation of cloud
K-SVD on obtained medical image data from patients who suffer from rheumatoid arthritis.
These images are produced by image systems with a lot of induced noise, so we shall test how
well cloud K-SVD can built an effective distributed dictionary for denoising applications. For
all experiments, we consider a network of P Kubernetes worker pods that can receive, compute
and send data as a self-contained and autonomous unit operating under the supervision of a
Kubernetes deployment controller. For these experiments, we scale the number of pods manually
for a deployment to demonstrate efficiency of the algorithm when more pods are added to the
working pool and input data is further distributed. All experiments are performed in a real
cluster and that pods share the same networking media, hence network delays and potential
traffic congestion will play a role in the final results.

55

56 CHAPTER 6. EXPERIMENTS AND RESULTS

Generally, we consider three different variants of cloud K-SVD that our experiments will focus
on [79] [36]:

� Centralized K-SVD: A single worker pod P = 1 receives all data signals YYY ∈ RM×Q for
the entire sparse approximation and dictionary learning task and does no intermediate
consensus iterations among peers, since the pod has all the data itself. This model is an
implementation of the traditional K-SVD scheme [11]. Upon completion, the single worker
pod will have computed a global dictionary DDD to approximate all of the data.

� Local K-SVD: Pod Pi receive YYY i ∈ RM×Qi data signals and perform the dictionary learning
task locally without any collaborative consensus iterations among peers. This model
distributes the data signals, but pod Pi will not become familiar with pod Pj ’s data due
to no consensus iterations. This model mimics the centralized version, but distributes the
data among multiple working pods.

� Cloud K-SVD: Pod Pi receive YYY i ∈ RM×Qi data signals and perform dictionary learning
collaboratively by first calculating the signal vector XXXi via sparse approximation and then
estimate the residual error via consensus iterations as shown in section 3.8. Here, all worker
pods P work together by either averaging or corrective consensus to lower the residual error
and properly estimate the signal vectors by a local dictionary DDDi that accommodates data
at node j. For all cloud K-SVD experiments, we use averaging consensus.

Note that all experiments are done with one preprocessing and one postprocessing pod. These
pods are not active in any part of a experiment and are used only to split and aggregate data.
The following parameters are configurable for cloud K-SVD, though some will often be fixed at
start to evaluate certain performance metrics for various data inputs. For centralized K-SVD
and the local version, some parameters are omitted in nature. For all experiments we note the
execution time and the approximation error in the final signal. Sparse approximation (SA) and
dictionary learning (DL) parameters are further detailed in section 3.5 and 3.6, respectively, whilst
Kubernetes parameters are from section 4.4.

� Iterations td, tp and tc: The cloud K-SVD algorithm performs three types of iterations, that
are nested from left to right: First, a number of td cloud iterations that compute the sparse
signal vector via OMP and update the corresponding atoms in the dictionary update step.
Second, a number of tp power iterations for each atom N . Third, a number of tc consensus
iterations that fetches the residual error from neighboring pods by averaging or corrective
consensus. See more in section 3.7 and 3.8.

� Atoms N : The number of atom column vectors in the dictionary DDD ∈ RM×N and the
length of the signal row vectors XXX ∈ RN×Q. As we evaluate overcomplete dictionaries in
the experiments, it follows that N �M . The initial dictionary at pods is usually initialized
with a fixed number atoms N and dimension M with randomly generated data.

� Signal size M : The length of the data signals in YYY ∈ RM×Q and atoms in the dictionary DDD.

� Data signals Q: The number of signal column vectors in YYY and XXX.

� Sparsity level K: Number of non-zero coefficients in the signal vectors of XXX.

� Pod weight W : A scalar that is multiplied by the difference between residual vectors qi and
qj in the consensus step. It defines how much empathize is put on vectors qj at node i in
range [0, 1].

6.2. EXPERIMENTS USING SYNTHETIC DATA 57

� Number of pods P : Number of worker pod replicas in Kubernetes that run cloud K-SVD in
a single experiment.

To evaluate the error in the approximations and the error in image recovery we use a mix
of metrics, specially MSE, `2-norm, PNSR and SSIM, all of which are recognized as reliable
instruments for error estimation in sparse approximation and image processing, see appendix A.

6.2 Experiments using synthetic data

Purpose

The first set of experiments run cloud K-SVD with synthetic data. This kind of data works well
for behavior testing and early evaluation of our implementation as it is simple to generate in
considerable amounts and is deterministic in a sense that can we generate the same data set over
and over again for every experiment. We have the following objectives in view:

� Evaluate the correctness and convergence behavior of the distributed power method compo-
nent in cloud K-SVD as a function of the number of td, tp and tc iterations using synthetic
distributed data. Recall that td is the number of overall cloud K-SVD iterations, tp is the
number of power iterations and tc is the number of consensus iterations. See 3.8 for a recap.

� Establish if the disparity between local dictionaries DDDi and DDDj is reduced as a function of
the number of cloud K-SVD iterations (td, tp and tc).

� Measure cloud K-SVD ability to cope with large amounts of data signals Q in terms of
accuracy in recovery and execution times.

� Compare the behavior of cloud K-SVD as a distributed algorithm with variants such as the
centralized K-SVD for P = 1 and the local K-SVD for P > 1 and tc = 0 ∧ tp = 0.

Data and setup

The pods will have a preallocated set of resources available (a Kubernetes pod limit) and a upper
bound set of the maximum amount of resources they can acquire (a Kubernetes request). All
pods will have the same number of resources available (CPU and memory). This is done to avoid
pod starvation, where a working process in a pod is constantly denied necessary resources to
process its work because they have been reserved by another. By setting a resource and request
limit we explicitly tell the Kubernetes controller to reverse the necessary number of resources
before allocating a pod to a node.

We consider two kinds to test for the synthetic data: A consensus test (1) to evaluate
convergence behavior of cloud K-SVD and a data test (2) to evaluate performance in approximation
and recovery in terms of executions and error. This way, (1) mainly tests the collaborative part
and compares the similarity in resulting DDD dictionaries, whereas (2) fixes the number of consensus
and power iteration to focus mainly on overall approximation error and execution times. For
both tests, we use a built-in Python method to generate training data and split it evenly at the
preprocessing pod so that every worker pod P obtains an equally sized pool of data samples.
Training data has been generated as sparse linear combinations of sparsity K from a random
DDDi, of size M ×N with atoms that are i.i.d. uniformly distributed entries with normalized `2
columns, in the range [0, 1]. Hence training data for Pi has been generated using DDDi and XXXi

drawn from a random distribution. All dictionary columns have been normalized to `2-norm. No
additional noise is added to the data signals at this stage. Sparse approximation is done using our
own implementation of SOMP cross-compiled to C-code, from Python, for performance reasons

58 CHAPTER 6. EXPERIMENTS AND RESULTS

since the number of samples Q is large for both tests. For the consensus iterations, we assign a
uniform weight w of some numeric value in the range [0, 1] to each pod.

For the consensus tests (1), the following configuration is used:

� A training data dimension M = 20 and quantity set to Q = 2000
� Number of dictionary atoms is N = 50
� Sparsity is set to K = 3
� Number of iterations is td = 50.
� Pod quantity is set to P = 4.
� Number of collaborative iterations is set to tp = 2, 3, 4, 5 and tc = 1, 5, 10.

For the data tests (2), the following configuration is used:

� A training data dimension M = 20 and quantity set to Q = 200, 800, 2000, 8000, 20000.
� Number of dictionary atoms is N = 50
� Sparsity is set to K = 3
� Number of iterations is td = 50.
� Pod quantity is set to P = 1, 4, 8, 16.
� Number of collaborative iterations is set to tp = 3 and tc = 5.

Expectations

We expect the following observations to be expressed in the experiments:

� For cloud K-SVD, the MSE between dictionaries DDDi and DDDj should decrease as a function
of the number of collaborative iterations td, tp and tc. This would indicate convergence to a
mutual global state zzz. Recall however that such iterations are network-based and require
pods to actively communicate over the wire, so increasing these should also mean longer
execution times for the whole algorithm.

� For centralized K-SVD, we expect a single pod to have slower execution times for the sparse
approximation stage since it has to process all data signals Q at every iteration, but be
faster at the dictionary update step because it can iterate and change its dictionary freely
without having to obtain a mutual consensus first.

� For local K-SVD, we expect pods to become well-acquainted with data Qi and efficiently
learn a dictionary that can approximate these signals, however since we do no collaborative
iterations here, we do not expect the pods to become familiar with data Qj . This can be
expressed by a large MSE between dictionaries DDDi and DDDj .

Results

We start with test results for consensus tests (1). Figures 6.1 and 6.2 show the average `2-norm
error and MSE, respectively, between dictionaries DDDi ∀i = 1, 2, . . . , P = 4 as a function of the
number of td iterations. Here, we fix the parameter tc for all experiments and notice the change
in error values when we increase tp. For both metrics, a lack of convergence is observed for tc = 1
no matter the number of tp. When we set tc higher, we get a much clear picture of the error
between the dictionaries as they drop collectively towards zero on a logarithmic scale.

6.2. EXPERIMENTS USING SYNTHETIC DATA 59

0 10 20 30 40 50
Iteration

2

4

6

8

10

12
2(

D
)

Tc = 1
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

2

4

6

8

10

12

2(
D

)

Tc = 5
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

2

4

6

8

10

12

2(
D

)

Tc = 10
Tp = 2
Tp = 3
Tp = 4
Tp = 5

Figure 6.1: The average `2-norm of the error between dictionaries of each pod at different tp and tc.
td = 0, 1, . . . , 50, M = 20, N = 50, Q = 2000, K = 3, P = 4.

0 10 20 30 40 50
Iteration

10 2

10 1

M
SE

(D
)

Tc = 1
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

10 3

10 2

10 1

M
SE

(D
)

Tc = 5
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

10 3

10 2

10 1

M
SE

(D
)

Tc = 10
Tp = 2
Tp = 3
Tp = 4
Tp = 5

Figure 6.2: The average MSE between dictionaries of each pod at different tp and tc. td = 0, 1, . . . , 50,
M = 20, N = 50, Q = 2000, K = 3, P = 4.

Figures 6.3, 6.4 and 6.5 show the average `2-norm error, MSE and PSNR, respectively,
between the original YYY and the approximation Ŷ̂ŶY as a function of td iterations. Again, we see
some turbulence in the error for tc = and no matter the number of tp, however all experiments
for tc = 1 drops in error as the number of all iterations td goes up, accordingly. We attribute the
unsteady behavior to a lack of consensus iterations for tc = 1 in the plot to the left. Setting a
higher tc permits pods to properly propagate their errors to all peers, thus converging at a smaller
error for Ŷ̂ŶY . Also observe that we in fact get better results in terms of YYY error for tc = 1, which is
naturally since the pods then solely approximate their own data, like local K-SVD, and do not
take into account any data at other pods. This means that piece-by-piece YYY is well represented,
but the dictionary DDD lacks a common denominator.

Table 6.1 show a list of average execution times for P = 4 pods using synthetic data tracked
for the collaborative K-SVD step. The purpose is to show how consensus and power iterations
impact the time it takes to complete the K-SVD step on average in the algorithm measured in
seconds. The signal approximation step, OMP, is not included here because it does not depend on
the number of consensus or power iterations, thus remain unchanged throughout all experiments
here. Timings here accompany the experiments we just showed in the plots above and numbers
are rounded to nearest single decimal. The trend in 6.1 is clear: The more consensus iterations
we do per power iteration, the longer the algorithm takes to complete the K-SVD step.

60 CHAPTER 6. EXPERIMENTS AND RESULTS

0 10 20 30 40 50
Iteration

10

15

20

25

30

35

40

45

50

2(
Y)

Tc = 1
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

30

35

40

45

50

2(
Y)

Tc = 5
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

30

35

40

45

50

2(
Y)

Tc = 10
Tp = 2
Tp = 3
Tp = 4
Tp = 5

Figure 6.3: The `2-norm of the error between the original signal YYY and the reconstructed signal Ŷ̂ŶY at
different tp and tc. td = 0, 1, . . . , 50, M = 20, N = 50, Q = 2000, K = 3, P = 4.

0 10 20 30 40 50
Iteration

10 2M
SE

(Y
)

Tc = 1
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

(Y
)

Tc = 5
Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

(Y
)

Tc = 10
Tp = 2
Tp = 3
Tp = 4
Tp = 5

Figure 6.4: The MSE between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different tp and tc.
td = 0, 1, . . . , 50, M = 20, N = 50, Q = 2000, K = 3, P = 4.

0 10 20 30 40 50
Iteration

26

28

30

32

34

36

38

PS
NR

(Y
)

Tc = 1

Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

26

27

28

29

30

31

PS
NR

(Y
)

Tc = 5

Tp = 2
Tp = 3
Tp = 4
Tp = 5

0 10 20 30 40 50
Iteration

26

27

28

29

30

31

PS
NR

(Y
)

Tc = 10

Tp = 2
Tp = 3
Tp = 4
Tp = 5

Figure 6.5: The SSIM between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different tp and tc.
td = 0, 1, . . . , 50, M = 20, N = 50, Q = 2000, K = 3, P = 4.

tc tp
2 3 4 5

1 4.5s 6.6s 8.3s 9.8s

5 18.4s 26.9s 35.2s 43.1s

10 34.5s 51.2s 67.9s 84.2s

Table 6.1: The average time of a K-SVD iteration with different tp and tc. td = 50, M = 20, N = 50,
Q = 2000, K = 3, P = 4.

6.2. EXPERIMENTS USING SYNTHETIC DATA 61

We now turn to the data tests (2) and start with a look at results for the centralized K-SVD
case, where we change the number of training signals Q for each run and observe the error
as a function of the number of iterations td. Figure 6.6 show error scores between Ŷ̂ŶY and YYY
for centralized K-SVD when the number of signals Q increase and a fixed dictionary size N .
Obviously, the error depends on the number of training signals as it is easier to represent a
few signals than many with a dictionary of the same size. We had to halt the experiments for
Q = 20000 (the purple line) at a iteration count td = 20 because of memory and time constraints,
however the error curve stabilizes around the 20 mark.

0 10 20 30 40 50
Iteration

10 2

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

(Y
)

Centralized K-SVD
P = 1

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

120

140

160

2(
Y)

Centralized K-SVD
P = 1

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

24

26

28

30

32

PS
NR

(Y
)

Centralized K-SVD
P = 1

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

SS
IM

(Y
)

Centralized K-SVD
P = 1

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.6: The MSE, `2-norm of the error, PSNR and SSIM between the original signal YYY and the
reconstructed signal Ŷ̂ŶY at different Q. td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50,
K = 3, P = 1.

The following tests use a local K-SVD configuration for data tests (2). This means P > 1 and
data is distributed to all pods but not trained collaboratively. Figures 6.7 and 6.8 show average
MSE scores between dictionaries DDDi ∀i = 1, 2, . . . , P , and MSE scores for the reconstruction Ŷ̂ŶY
compared to the original. We set the number of iterations td to 50 for all runs. Even with a high
number of iterations td, the error between dictionaries is stationary due to a lack of consensus
between pods and they actually diverge somewhat when the number of signals is low and the

62 CHAPTER 6. EXPERIMENTS AND RESULTS

pod count is high. For YYY , the reconstruction error is significant for a low number of signals and
deteriorates slightly when that parameter goes up.

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

(D
)

Local K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

(D
)

Local K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

(D
)

Local K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.7: The average MSE between dictionaries of each pod at different Q and P . td = 0, 1, . . . , 50,
tp = 3, tc = 5, M = 20, N = 50, K = 3.

0 10 20 30 40 50
Iteration

10 3

10 2

M
SE

(Y
)

Local K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 4

10 3

10 2

M
SE

(Y
)

Local K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
SE

(Y
)

Local K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.8: The MSE between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different Q and P .
td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3.

Figure 6.9 is merely the SSIM for the reconstruction of YYY . Recall that a score of 1 is perfect
reconstruction and anything below 0.5 is poor. As expected, it is easier to reconstruct few signals
than many, for example Q = 200 versus Q = 8000, although the SSIM is certainly begin improved
upon as a function of the number of overall iterations.

Next we use a cloud K-SVD configuration for data tests (2), in other words true cloud K-SVD
with tp = 2 and tc = 5 set. So here the number of pods is P > 1, data is distributed and trained
in a collaborative fashion. Again, we show the MSE metric for DDD and YYY as in the local K-SVD
experiments for comparison. Figures 6.10 and 6.11 show average MSE scores between dictionaries
and MSE for the reconstruction Ŷ̂ŶY . This time the pods can exchange residuals, so for the MSE
between dictionaries we see vastly improved scores now in cloud K-SVD compared to traditional
local K-SVD. Again we cut off the purple line, Q = 20000, at iteration td = 20 because of memory
and time constraints. For Ŷ̂ŶY , a large number of signals is naturally harder to approximate than a
small number, hence the MSE is better at for example Q = 800, the orange line, than at Q = 8000,
the red line. MSE for Ŷ̂ŶY drops as the number of pods increase, simply because data is more
distributed when more pods participate.

6.2. EXPERIMENTS USING SYNTHETIC DATA 63

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0
SS

IM
(Y

)

Local K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(Y
)

Local K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(Y
)

Local K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.9: The SSIM between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different Q and P .
td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3.

0 10 20 30 40 50
Iteration

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 4

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 5

10 4

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.10: The average MSE between dictionaries of each pod at different Q and P . td = 0, 1, . . . , 50,
tp = 3, tc = 5, M = 20, N = 50, K = 3.

0 10 20 30 40 50
Iteration

10 2

M
SE

(Y
)

Cloud K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 2M
SE

(Y
)

Cloud K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 3

10 2

M
SE

(Y
)

Cloud K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.11: The MSE between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different Q and
P . td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3.

Figure 6.12 is the SSIM for the reconstruction of YYY . Recall that a score of 1 is perfect
reconstruction and anything below 0.5 is poor. As expected, it is harder to reconstruct the signals
when consensus is enabled (cloud K-SVD) compared to disabled (local K-SVD), as compared to
Figure 6.9.

64 CHAPTER 6. EXPERIMENTS AND RESULTS

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

SS
IM

(Y
)

Cloud K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

SS
IM

(Y
)

Cloud K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(Y
)

Cloud K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.12: The SSIM between the original signal YYY and the reconstructed signal Ŷ̂ŶY at different Q and
P . td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3.

Figures 6.13, 6.14 and 6.15 compare average MSE scores between dictionaries, now local
versus cloud K-SVD, when we change the number of participating pods so that P = 4, 8, 16. We
see a clear improvement in MSE when we allow the pods to communicate and exchange residual
information to make a common dictionary (plots to the right), compared to traditional K-SVD
with distributed data (plots to the left). For cloud K-SVD with P = 8 and P = 16, with signals
Q = 200, the blue line stagnates after the 20th iteration which we believe is the result of a lack of
training signals. With only a few samples, it is harder to approximate a function than with many,
so the approximation is inherently more heterogeneous with fewer samples than with many.

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

(D
)

Local K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.13: Comparison of the average MSE between dictionaries of each pod at different Q using local
and cloud K-SVD. td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3, P = 4.

6.2. EXPERIMENTS USING SYNTHETIC DATA 65

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

(D
)

Local K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 4

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 8

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.14: Comparison of the average MSE between dictionaries of each pod at different Q using local
and cloud K-SVD. td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3, P = 8.

0 10 20 30 40 50
Iteration

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

(D
)

Local K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

10 5

10 4

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
P = 16

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.15: Comparison of the average MSE between dictionaries of each pod at different Q using local
and cloud K-SVD. td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50, K = 3, P = 16.

Figure 6.16 show PSNR scores between local and cloud K-SVD for the reconstruction of
YYY with just P = 4. We see that both K-SVD’s reduce the error in YYY by an equal amount for
Q > 200, it just happens a lot faster for local (some td = 10) than cloud (some td = 40). This
trend can be explained as cloud K-SVD has to take into account every other signal at each
iteration, which steers the coefficients in the signal matrix XXX and atoms in the dictionary DDD away
from the ideal values that correspond to its own training data. Thus with cloud K-SVD we obtain

66 CHAPTER 6. EXPERIMENTS AND RESULTS

a more common dictionary and signal matrix, but the price is plainly more iterations hence longer
execution times if we want to get the same PSNR numbers in cloud K-SVD as in local K-SVD.

0 10 20 30 40 50
Iteration

25

30

35

40

PS
NR

(Y
)

Local K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

0 10 20 30 40 50
Iteration

24

26

28

30

32

34

PS
NR

(Y
)

Cloud K-SVD
P = 4

Q = 200
Q = 800
Q = 2000
Q = 8000
Q = 20000

Figure 6.16: Comparison of the PSNR between the original signal YYY and the reconstructed signal Ŷ̂ŶY at
different Q using local and cloud K-SVD. td = 0, 1, . . . , 50, tp = 3, tc = 5, M = 20, N = 50,
K = 3, P = 4.

Table 6.2 shows average execution times for centralized, local and cloud K-SVD configurations
when we change the number of training signals Q and pods P that participate in the test and
measure the time it takes to complete the OMP and dictionary update step, respectively. We
only show parts of the data here to demonstrate the trend and consequences more data have for
the various configurations. As always, the complete data set is found in the result directory1. In
table 6.2 we see that the time it takes to complete an OMP step is related to Q (a high Q means
longer OMP) and K-SVD to consensus iterations and P (more pods means lengthy dictionary
update steps). Between local and cloud, it obviously takes longer to update the dictionary in the
latter because we have to complete power and consensus iterations.

P Q
200 800 2000 8000 20000

Centralized
P = 1

OMP: 0.4s,
K-SVD: 0.1s

OMP: 1.5s,
K-SVD: 0.2s

OMP: 3.7s,
K-SVD: 0.5s

OMP: 14.7s,
K-SVD: 2.3s

OMP: 36.8s,
K-SVD: 6.9s

Local P = 4 OMP: 0.1s,
K-SVD: 0.1s

OMP: 0.4s,
K-SVD: 0.1s

OMP: 0.9s,
K-SVD: 0.2s

OMP: 3.7s,
K-SVD: 0.5s

OMP: 9.2s,
K-SVD: 1.6s

Cloud
P = 4

OMP: 0.2s,
K-SVD:
24.8s

OMP: 0.7s,
K-SVD:
25.8s

OMP: 1.6s,
K-SVD:
27.0s

OMP: 5.9s,
K-SVD:
28.9s

OMP: 12.6s,
K-SVD: 32s

Table 6.2: The average time of a OMP and K-SVD iteration with different data size Q and pod quantity
P .

1See results/syntheticData/averageTimes.json

6.2. EXPERIMENTS USING SYNTHETIC DATA 67

Discussion

The purpose of these experiments is to get an overall evaluation of the practical usage of the
centralized, local and cloud K-SVD. We start by testing the consensus part of cloud K-SVD (1)
by looking at the changes made to the dictionary and signal approximations with different power
tp and consensus tc iterations. As expected, when we increase tc the pods reach consensus faster,
and the average error between the dictionaries of the pods becomes lower, as seen in figures 6.1
and 6.2. However we did not expect the fact that the power iterations tp had a lesser effect on
the overall consensus. Looking at the synthetic data reconstruction, as seen in figures 6.3, 6.4
and 6.5, we find that by increasing tc we are not as efficient at reconstructing the original signal
YYY as we are with fewer tc, but increasing tp has an overall good effect on the reconstruction. We
believe that the reason behind tc having that effect on the signal is because of the dictionary DDDi

of each pod tends towards each other making those dictionaries into a global one and thereby
creating a mutual dictionary rather than one specialized to a certain pod; DDDi ≈DDDj .

Examining the average execution times of the K-SVD iteration, see table 6.1, there is no
surprise. The greater number of tp and tc iterations, the longer it takes for an iteration of K-SVD
to complete.

In the next tests (2) we observe the centralized, local and cloud K-SVD with different amount
of data Q and pods P . We start by observing the centralized K-SVD and how it performs when
reconstructing data of different sizes. We observe that by increasing the amount of data, the
harder it is to reconstruct it all, as shown in figure 6.6, but that the overall error settles with 2000
and above at MSE(YYY − ŶYY) = 2 · 10−2 and SSIM(YYY − ŶYY) = 0.8, which is decent and expected
on synthetic data. Since this was a test on centralized K-SVD, it only has one dictionary because
there only is a single pod. We then start by comparing centralized K-SVD results to the local
K-SVD ones. The local K-SVD does not have a consensus step, which means that the pods do
not reach consensus of a dictionary and DDDi 6= DDDj , as shown in figure 6.7. However the signal
reconstruction is an entire different matter. Since each pod only got a fraction of the data and
need not reach consensus among peers, they can specialize in their part of the data and thereby
do a better reconstruction job than centralized K-SVD, see figure 6.9. Going from local K-SVD to
cloud K-SVD, we see a big difference in the consensus between pods. The average MSE between
dictionaries of pods drop, and the more pods, the lower average MSE, as seen in figure 6.10. This
unfortunately also impacts the error of our reconstructed signal in the sense that it starts to look
like centralized K-SVD, see figure 6.12. This is however expected, since cloud K-SVD should be
reminiscent of the centralized K-SVD in its results.

As a last part of these experiments, we observe the average execution times of OMP and
K-SVD for the centralized K-SVD with one pod, and a total of four pods for both local and
cloud K-SVD, see table 6.2. By increasing the amount of training data, the OMP iteration step is
significantly impacted, while opposite, the K-SVD step is slowed-down by whether the consensus
step is enabled or not.

68 CHAPTER 6. EXPERIMENTS AND RESULTS

6.3 Experiments using image patches

Purpose

The second set of experiments evaluates how well cloud K-SVD can learn and encode geometric
structures represented in natural images divided into patches and how well it can reconstruct
these by a sparse approximation and a dictionary that has been trained on the same structures.
The act of patch learning is an established method to measure adaptiveness and later accuracy in
recovery for both local and distributed dictionary models and is often used in denoising scenarios
[64] [15] [61]. We have the following objectives in view:

� Demonstrate and measure cloud K-SVD ’s ability to learn a new dictionary from completely
uncharted image patches in terms of learning time and how effectively such learned dictionary
(or dictionaries at multiple pods) can be used to jointly approximate the original image by
a reconstruction process.

� Compare the performance of cloud K-SVD on noiseless (1) and noisy data (2) in terms of
accuracy and execution times as a function of iterations td, patch size M , the number of
patches Q and the atom count N in the dictionary.

� Establish if the patch recovery procedure will be positively or negatively effected by the
number of collaborative power tp and consensus iterations tc in terms of accuracy and
execution times.

Figure 6.17 is a simple model of our setup for the denoising case (2) in Kubernetes. It shows
how YYY is split and later recovered in a noiseless version with P = 3.

Preprocessor pod Worker podWorker pod Worker pod Postprocessor pod

Y

Noisy image Y(1) Y(2) Y(3) Recovered clean
image

D, X

Figure 6.17: How we do denoising of natural images. The preprocessor splits data in three equal sized
pieces for P = 3, the worker pods processes their respective part and the postprocessor puts
it all back together again.

Data and setup

We consider two kinds of test for patch learning: A noiseless training data case (1) and a noisy one
(2). The first case is designed to focus solely on the learning and coding process of clean patches
without possible implications from distortions reductions in image quality. The second case
features training patches contaminated with Additive White Gaussian Noise (AWGN) commonly
found in natural images and demonstrates the algorithm’s ability to effectively remove distortions
and unwanted artifacts [82]. Both cases are done using a non-calibrated natural image dataset
designed for image processing tasks. The set consists of eight gray-scaled 8-bit images chosen
with respect to their dimensionality and variety in contours. Figure 6.18 shows thumbnails of all

6.3. EXPERIMENTS USING IMAGE PATCHES 69

training images. Table 6.3 shows properties such as the original resolution, the resolution when it
has been downscaled by a factor α = 2, image mean and variance.

Castle Lenna China Flower

Chelsea Camera Astronaut Face

Figure 6.18: Thumbnails of the eight training images used in the patch experiments.

Name Raw resolution Resolution/α = 2 Mean values Variance values

Castle 304× 200 152× 100 115 11.18

Lenna 480× 512 240× 256 124 8.96

China 427× 640 214× 320 114 26.95

Flower 427× 640 214× 320 68 9.97

Chelsea 300× 451 150× 226 117 4.05

Camera 512× 512 256× 256 118 15.07

Astronaut 512× 512 256× 256 112 22.27

Face 150× 150 75× 75 139 15.52

Table 6.3: Test images for patch learning with their respective attributes. Downscaling by a decimation
factor α creates blocks of α× α size and reduces elements in each block to a local mean. Mean
values are in the range [0, 255] and show the average intensity contribution of individual pixels.
The variance indicates how much each pixel varies from its neighboring pixel.

The images are relatively high in resolution, so for the sake of performance we apply a
decimation factor α in the range [1 − 5] to some images before processing. An α of 1 means
no downscaling takes place, whereas a α of 2 means that the total number of pixels have been
cut in half, column and row wise, compared to the original resolution. This reduces memory
consumption and lowers execution times drastically allowing us to perform more experiments.
For patch learning, we introduce a new variable PS that denotes the resolution of extracted
patches, for example 5× 5 or 8× 8. For both cases, all possible overlapped patches of sizes PS
are extracted from each training image, counting for example Q = (256− 8 + 1)2 = 62001 patches
in total for a patch size of PS = 8× 8, resolution 256× 256 and M = 64, see definition 4. The
total amount of training data is then Total = M ×Q. Patch data will be used for training the
distributed dictionary as in [36]. The dimension of an input data sample is then M (vertically
stacked columns) for patch size PS and the total amount of training data is then Tt = M ×Q.
The resulting data vectors are gathered in a single matrix Y ∈ RM×Q before being divided in
equally-sized parts and distributed to P pods for the proposed algorithm case. For (2) we add a
layer of Gaussian distributed noise by a mean µ and variance σ2 to all training data in YYY at the
preprocessing stage. Worker pods are then responsible for making a sparse approximation that
reduces the amount of noise in the resulting Ŷ̂ŶY data matrix.

70 CHAPTER 6. EXPERIMENTS AND RESULTS

Definition 4 Given image size = (x, y) and patch size = (a, b) of scalar values, the number of
patches Q is:

Q = (x− a+ 1)× (y − b+ 1)
⇓ x = y ∧ a = b
Q = (x− a+ 1)2

(6.1)

For each experiment, a randomDDDi of size M×N is generated for each pod with i.i.d. uniformly
distributed entries with normalized `2 columns in the range [0, 1], as was the case in 6.2. Each
dictionary is distributed to pods Pi before start. Then all worker pods in the network is in charge
of their own local dictionary, which they will evolve as the training process commences. Again,
we us our own implementation of SOMP cross-compiled to C-code from Python and assign the
weight scalar w values in the range [0, 1].

Generally N �M , so for both tests the following holds unless something else is stated:

� (M = 25) =⇒ (PS = 5× 5) =⇒ (N = 50).
� (M = 36) =⇒ (PS = 6× 6) =⇒ (N = 100).
� (M = 49) =⇒ (PS = 7× 7) =⇒ (N = 100).
� (M = 64) =⇒ (PS = 8× 8) =⇒ (N = 150).
� (M = 81) =⇒ (PS = 9× 9) =⇒ (N = 200).

For the noiseless tests (1), the following configuration is used:

� The patch size is set to PS = 5× 5, 6× 6, 7× 7, 8× 8, 9× 9.
� Training data dimension is M = 25, 36, 49, 64, 81.
� Number of dictionary atoms is set to N = 50, 100, 150, 200.
� Sparsity is set to K = 3, 5, 7.
� Number of iterations is td = 10.
� Pod quantity is set to P = 4.
� Number of collaborative iterations is set to tp = 3 and tc = 5.

For the noisy tests (2), the following configuration is used:

� The patch size is set to PS = 5× 5, 7× 7, 9× 9.
� Training data dimension is M = 20, 36, 49, 64, 81.
� Number of dictionary atoms is set to N = 50, 100, 150, 200.
� Sparsity is set to K = 3, 5, 7.
� Number of iterations is td = 10.
� Pod quantity is set to P = 4.
� Number of collaborative iterations is set to tp = 3 and tc = 5.
� The noise mean is µ = 1 and variance σ2 = 0.001, 0.005, 0.01.

Expectations

We expect the following observations to be expressed in the experiments:

� For both cases, we expect the OMP alone to have longer execution times as a function of
the number of data samples Q. This is naturally as it has to process more data per iteration.
As we add more pods P to the pool of workers, OMP should perform better on the other
hand, as the total amount of data is further divided. Moreover as the dimensionality of a
patch M goes up, we would have to increase sparsity K as well to keep the error in check.
For the dictionary size, there should be a clear-cut connection between the number of atoms
N and how long the overall algorithm takes to place.

6.3. EXPERIMENTS USING IMAGE PATCHES 71

� For the noiseless case, we expect cloud K-SVD to be able to reconstruct a near-original
version of the training image. The MSE when comparing the two should decrease as a
function of the number of td iterations. We expect a slightly higher MSE in a case where
the number of tc and tp iterations increase, though on other hand pod Pi would become
more aware of the error of pod Pj .

� For the noisy case, we expect an acceptable level of denoising. We will use MSE, PSNR
and SSIM to measure how effective cloud K-SVD is at denoising and compare the denoised
version with the original one.

Results

We start by examining results for the noiseless case (1). For all experiments in (1), we set P = 4.
Figure 6.19 shows the average MSE between dictionaries DDDi ∀i = 1, 2, . . . , P = 4 as a function of
td iterations when consensus is either enabled or disabled. We see a clear drop in MSE between
the dictionaries when consensus is enabled (cloud K-SVD) compared to regular K-SVD with
distributed data (local K-SVD). In other words, the pods become aware of each other’s data this
way thus produce a dictionary that can be used to represent the entire signal YYY better, not just
YYY i.

0 2 4 6 8 10
Iteration

10 1

M
SE

(D
)

Local K-SVD
Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

0 2 4 6 8 10
Iteration

10 3

10 2

10 1

M
SE

(D
)

Cloud K-SVD
Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

Figure 6.19: The average MSE between dictionaries of each pod for different noiseless images. td =
0, 1, . . . , 10, tp = 3, tc = 5, M = 25, N = 50, K = 3, P = 4.

Figures 6.20 and 6.21 show actual reconstruction from noiseless ”Castle” and ”Face” patches,
respectively. We show the difference here between cloud and local K-SVD for P = 4, but little
disparity is seen visually. This is contributed to the fact that we reconstruct YYY i by dictionary DDDi

and XXXi. If instead DDDj was used to reconstruct YYY i, we would expect a better reconstruction had
consensus been enabled.

72 CHAPTER 6. EXPERIMENTS AND RESULTS

Castle Original Castle after Local K-SVD Castle after Cloud K-SVD

Figure 6.20: Reconstructed images of Castle after local and cloud K-SVD, compared to the original.
td = 10, tp = 3, tc = 5, M = 25, N = 50, K = 3, P = 4.

Face Original Face after Local K-SVD Face after Cloud K-SVD

Figure 6.21: Reconstructed images of Face after local and cloud K-SVD, compared to the original. td = 10,
tp = 3, tc = 5, M = 25, N = 50, K = 3, P = 4.

Figures 6.22 and 6.23 show the MSE and SSIM score, respectively, when comparing the
reconstructed Ŷ̂ŶY to YYY in the cloud K-SVD or local K-SVD case as a function of iterations td. We
observe similar behavior between the two variants, mainly due the fact that Ŷ̂ŶY i is made from a
corresponding dictionary DDDi and signal XXXi. Here, ”China” lacks a bit in the MSE and SSIM
department, whereas ”Flower” mimics the original image a lot closer. It seems the algorithm does
favor more simple images, that contain lots of repeated contours and few specific structures, but
shy away from those that have a great deal of small and distinctive details.

6.3. EXPERIMENTS USING IMAGE PATCHES 73

0 2 4 6 8 10
Iteration

10 3

M
SE

(Y
)

Local K-SVD
Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

0 2 4 6 8 10
Iteration

10 3

M
SE

(Y
)

Cloud K-SVD
Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

Figure 6.22: The MSE between the original signal YYY and the reconstructed signal Ŷ̂ŶY for different noiseless
images. td = 0, 1, . . . , 10, tp = 3, tc = 5, M = 25, N = 50, K = 3, P = 4.

0 2 4 6 8 10
Iteration

0.90

0.92

0.94

0.96

0.98

SS
IM

(Y
)

Local K-SVD

Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

0 2 4 6 8 10
Iteration

0.88

0.90

0.92

0.94

0.96

0.98

SS
IM

(Y
)

Cloud K-SVD

Astronaut
Camera
Castle
Chelsea
China
Face
Flower
Lenna

Figure 6.23: The SSIM between the original signal YYY and the reconstructed signal Ŷ̂ŶY for different noiseless
images. td = 0, 1, . . . , 10, tp = 3, tc = 5, M = 25, N = 50, K = 3, P = 4.

Figure 6.24 shows the ”Castle” image reconstructed using cloud K-SVD with K = 3, 5, 7.
There is a significant improvement in detail for K = 7 compared to the other two, as it appears
less blurry and there is more detail in the reconstruction when K is increased. Recall that K the
number of non-zero coefficients in the signal vector XXX, so a large K should allow more detail to
be kept. However to how sparse approximation works, it is difficult to completely remove the
blurriness factor when reconstructing images.

74 CHAPTER 6. EXPERIMENTS AND RESULTS

Castle Original Castle Cloud K-SVD
K = 3

Castle Cloud K-SVD
K = 5

Castle Cloud K-SVD
K = 7

Figure 6.24: Reconstructed images of Castle after cloud K-SVD, with varying K. td = 10, tp = 3, tc = 5,
M = 25, N = 50, P = 4.

Figures 6.25, 6.26 and 6.27 all show reconstructions of the ”Castle” image in the cloud K-SVD
case. This time we include specific error metrics for various K values like the `2-norm, MSE, the
PSNR and SSIM. We see definitive improvements in the numbers when K is increased.

Original Difference
2: 5.28, MSE: 0.0005, PSNR: 33.38, SSIM: 0.98

Reconstruction

Reconstructed image

Figure 6.25: Reconstructed image of Castle after cloud K-SVD, compared to the original. td = 10, tp = 3,
tc = 5, M = 25, N = 50, K = 3, P = 4.

Original Difference
2: 3.93, MSE: 0.0003, PSNR: 35.96, SSIM: 0.99

Reconstruction

Reconstructed image

Figure 6.26: Reconstructed image of Castle after cloud K-SVD, compared to the original. td = 10, tp = 3,
tc = 5, M = 25, N = 50, K = 5, P = 4.

6.3. EXPERIMENTS USING IMAGE PATCHES 75

Original Difference
2: 2.81, MSE: 0.0001, PSNR: 38.86, SSIM: 1.00

Reconstruction

Reconstructed image

Figure 6.27: Reconstructed image of Castle after cloud K-SVD, compared to the original. td = 10, tp = 3,
tc = 5, M = 25, N = 50, K = 7, P = 4.

Figure 6.28 shows how the error metrics are effected when setting the sparsity level K = 3, 5, 7
as a function of td iterations. We notice that a higher K seem to decrease MSE, `2-norm, PSNR
and SSIM between YYY and Ŷ̂ŶY significantly for the noiseless case.

0 2 4 6 8 10
Iteration

3

4

5

6

7

8

9

10

2(
Y)

2-norm of Y
K = 3
K = 5
K = 7

0 2 4 6 8 10
Iteration

10 3

M
SE

(Y
)

MSE of Y
K = 3
K = 5
K = 7

0 2 4 6 8 10
Iteration

28

30

32

34

36

38

PS
NR

(Y
)

PSNR of Y

K = 3
K = 5
K = 7

0 2 4 6 8 10
Iteration

0.94

0.95

0.96

0.97

0.98

0.99

SS
IM

(Y
)

SSIM of Y

K = 3
K = 5
K = 7

Figure 6.28: The MSE, `2-norm of the error, PSNR and SSIM between the original signal YYY and the
reconstructed signal Ŷ̂ŶY , of the Castle image, at different K. td = 0, 1, . . . , 10, tp = 3, tc = 5,
M = 25, N = 50, P = 4.

Figures 6.29 and 6.30 show reconstruction errors as a function of the number of iterations td
when the patch dimension is increased (M = 25, 36, 49, 64, 81) and a visual presentation of the
same experiments, respectively. Recall that patch size PS is the resolution of extracted patches
and M is the dimension (e.g. for PS = 5× 5 then M = 25). By rule of thumb, N �M , so we
increase N as well. Here all experiments are done with noiseless training data from the ”Face”

76 CHAPTER 6. EXPERIMENTS AND RESULTS

image. We see a lower MSE and `2-norm between YYY and Ŷ̂ŶY when the patch size is lower, for
example M = 25, by comparison to a larger patch size, for example M = 49. The PSNR and
SSIM exhibit similar behavior when the patch size goes up. Remember that we seek a low MSE
and `2-norm, but a high PSNR and SSIM.

0 2 4 6 8 10
Iteration

4

6

8

10

12

2(
Y)

2-norm of Y
PS = (5x5)
PS = (6x6)
PS = (7x7)
PS = (8x8)
PS = (9x9)

0 2 4 6 8 10
Iteration

10 3

M
SE

(Y
)

MSE of Y
PS = (5x5)
PS = (6x6)
PS = (7x7)
PS = (8x8)
PS = (9x9)

0 2 4 6 8 10
Iteration

22

24

26

28

30

32

PS
NR

(Y
)

PSNR of Y

PS = (5x5)
PS = (6x6)
PS = (7x7)
PS = (8x8)
PS = (9x9)

0 2 4 6 8 10
Iteration

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

SS
IM

(Y
)

SSIM of Y

PS = (5x5)
PS = (6x6)
PS = (7x7)
PS = (8x8)
PS = (9x9)

Figure 6.29: The MSE, `2-norm of the error, PSNR and SSIM between the original signal YYY and the
reconstructed signal Ŷ̂ŶY , of the Face image, at different M and N . td = 0, 1, . . . , 10, tp = 3,
tc = 5, K = 3, P = 4.

6.3. EXPERIMENTS USING IMAGE PATCHES 77

Face Original Face after Cloud K-SVD
PatchSize = (5x5), N = 50

Face after Cloud K-SVD
PatchSize = (6x6), N = 100

Face after Cloud K-SVD
PatchSize = (7x7), N = 100

Face after Cloud K-SVD
PatchSize = (8x8), N = 150

Face after Cloud K-SVD
PatchSize = (9x9), N = 200

Figure 6.30: Visual representation of reconstructions after cloud K-SVD from noiseless version of Face,
at varying data sizes M and N . td = 10, tp = 3, tc = 5, K = 3, P = 4.

Table 6.4, 6.5 and 6.6 show average execution times for P pods tracked for the OMP and
K-SVD step for values of K = 3, 5, 7, M = 25, 36, 49, 64, 81 and α = 1, 2 in local K-SVD and
cloud K-SVD runs, respectively. For all runs we set P = 4. The OMP step seems to be impacted
significantly by a higher K, as expected, whilst the K-SVD step is clearly doing alright with K
set high. On the other hand, OMP is not really slowed down by using larger patch dimensionality
M but K-SVD takes a hit as it increases. This is because generally N � M , usually twice its
size, so the dictionary size N gets bigger as M go up. Because K-SVD updates the dictionary per
atom, it naturally takes longer to update a large dictionary than a small one.

Astronaut Camera Castle Chelsea China Face Flower Lenna

Local
OMP

28s 29.4s 27.3s 15.1s 30.6s 9.8s 30.7s 27.6s

Cloud
OMP

34.2s 32.6s 31.6s 18.5s 34.2s 12.5s 35.6s 31.2s

Local K-
SVD

7.5s 7.1s 6.7s 3.3s 8s 2.5s 7.6s 6.8s

Cloud
K-SVD

42.3s 43.1s 43.5s 33.9s 44.9s 31.9s 46.4s 42.8s

Table 6.4: The average Execution times of OMP and K-SVD iterations, for local K-SVD (tp = 0, tc = 0)
and cloud K-SVD (tp = 3, tc = 5) using noiseless patches. K = 3, M = 25, N = 50. Castle
and Face at α = 1, the rest at α = 2

78 CHAPTER 6. EXPERIMENTS AND RESULTS

Castle, K = 3 Castle, K = 5 Castle, K = 7

Local OMP 27.3s 45.2s 64.4s

Cloud OMP 31.6s 51.9s 74.2s

Local K-SVD 6.7s 8.7s 11.1s

Cloud K-SVD 43.5s 45.4s 43.1s

Table 6.5: The average Execution times of OMP and K-SVD iterations, for local K-SVD (tp = 0, tc = 0)
and cloud K-SVD (tp = 3, tc = 5) using Castle with different sparsity K values. M = 25,
N = 50, α = 1.

Face
M = 25
N = 50

Face
M = 36
N = 100

Face
M = 49
N = 100

Face
M = 64
N = 150

Face
M = 81
N = 200

Local OMP 9.8s 10s 10.1s 10.6s 10.9s

Cloud OMP 12.5s 14.3s 13.3s 16.3s 15.9s

Local K-SVD 2.5s 4.8s 6.6s 12.9s 17.7s

Cloud K-SVD 31.9s 63.4s 71.5s 120.5s 157.9s

Table 6.6: The average Execution times of OMP and K-SVD iterations, for local K-SVD (tp = 0, tc = 0)
and cloud K-SVD (tp = 3, tc = 5) using Face with different data sizes M and N values. K = 3,
α = 1.

We now turn our attention to the noisy training case (2). We add a layer of Gaussian
distributed noise by mean µ = 1 and variance σ2 = 0.001, 0.005, 0.01 to all training images and
then extract Q noisy patches. Figure 6.31 shows the MSE, PSNR and SSIM scores for Ŷ̂ŶY as a
function of td iterations compared to the original noiseless YYY after cloud K-SVD has reconstructed
the ”Face” image from noisy patches. This is the severe noise case. Here, the variance is set to
σ2 = 0.01 various configurations of PS, K and N is set as seen in the legend. We see a break-even
around iteration 4 for most cases and some configurations even tend to do worse as the number of
iterations go up. Because the noise level is quite high (heavy-tailed Gaussian), at some iteration
the algorithm now starts reconstructing the noise because it has only been exposed to these noisy
measurements.

6.3. EXPERIMENTS USING IMAGE PATCHES 79

0 2 4 6 8 10
Iteration

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

M
SE

(Y
)

Face after Cloud K-SVD
MSE, 2 = 0.01

0 2 4 6 8 10
Iteration

22

23

24

25

26

27

28

PS
NR

(Y
)

Face after Cloud K-SVD
PSNR, 2 = 0.01

0 2 4 6 8 10
Iteration

0.70

0.75

0.80

0.85

SS
IM

(Y
)

Face after Cloud K-SVD
SSIM, 2 = 0.01

PS = (5x5), K = 3, N = 50
PS = (5x5), K = 5, N = 50
PS = (5x5), K = 7, N = 50
PS = (7x7), K = 3, N = 100
PS = (7x7), K = 5, N = 100
PS = (7x7), K = 7, N = 100
PS = (9x9), K = 3, N = 200
PS = (9x9), K = 5, N = 200
PS = (9x9), K = 7, N = 200

Figure 6.31: The MSE, PSNR and SSIM between the original signal YYY and the reconstructed signal
Ŷ̂ŶY , of the Face image with added Gaussian noise (σ2 = 0.01), at different M , N and K.
td = 0, 1, . . . , 10, tp = 3, tc = 5, P = 4.

Figure 6.32 mimics the data setup in 6.31, but with a variance set to σ2 = 0.005. This is the
middle ground for the noise level in our experiments. Clearly, a low patch size and a high sparsity
(the green line) struggles to reduce noise, whilst a low sparsity configuration does a better job.
By looking at the results, an acceptable configuration is a patch size around 7× 7 thus M = 49,
an atom count of 100 and a sparsity of K = 3 for our training data.

80 CHAPTER 6. EXPERIMENTS AND RESULTS

0 2 4 6 8 10
Iteration

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

M
SE

(Y
)

Face after Cloud K-SVD
MSE, 2 = 0.005

0 2 4 6 8 10
Iteration

22

23

24

25

26

27

28

29

PS
NR

(Y
)

Face after Cloud K-SVD
PSNR, 2 = 0.005

0 2 4 6 8 10
Iteration

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

SS
IM

(Y
)

Face after Cloud K-SVD
SSIM, 2 = 0.005

PS = (5x5), K = 3, N = 50
PS = (5x5), K = 5, N = 50
PS = (5x5), K = 7, N = 50
PS = (7x7), K = 3, N = 100
PS = (7x7), K = 5, N = 100
PS = (7x7), K = 7, N = 100
PS = (9x9), K = 3, N = 200
PS = (9x9), K = 5, N = 200
PS = (9x9), K = 7, N = 200

Figure 6.32: The MSE, PSNR and SSIM between the original signal YYY and the reconstructed signal
Ŷ̂ŶY , of the Face image with added Gaussian noise (σ2 = 0.005), at different M , N and K.
td = 0, 1, . . . , 10, tp = 3, tc = 5, P = 4.

Figure 6.33 mimics the data setup in 6.31, but with a variance set to σ2 = 0.001. We see that
a high pixel size PS with a low sparsity K setting is no longer ideal when the noise variance is low.
When K is low and PS is high (the pink line), cloud K-SVD struggles to properly reconstruct
the image. It shows that cloud K-SVD performs better with high sparsity in case there is little to
no noise in the input signal, but does better with a low sparsity in case the input is contaminated
or distorted in any way.

6.3. EXPERIMENTS USING IMAGE PATCHES 81

0 2 4 6 8 10
Iteration

10 3

M
SE

(Y
)

Face after Cloud K-SVD
MSE, 2 = 0.001

0 2 4 6 8 10
Iteration

22

24

26

28

30

32

PS
NR

(Y
)

Face after Cloud K-SVD
PSNR, 2 = 0.001

0 2 4 6 8 10
Iteration

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

SS
IM

(Y
)

Face after Cloud K-SVD
SSIM, 2 = 0.001

PS = (5x5), K = 3, N = 50
PS = (5x5), K = 5, N = 50
PS = (5x5), K = 7, N = 50
PS = (7x7), K = 3, N = 100
PS = (7x7), K = 5, N = 100
PS = (7x7), K = 7, N = 100
PS = (9x9), K = 3, N = 200
PS = (9x9), K = 5, N = 200
PS = (9x9), K = 7, N = 200

Figure 6.33: The MSE, PSNR and SSIM between the original signal YYY and the reconstructed signal
Ŷ̂ŶY , of the Face image with added Gaussian noise (σ2 = 0.001), at different M , N and K.
td = 0, 1, . . . , 10, tp = 3, tc = 5, P = 4.

Figure 6.34 shows the ”Face” image now contaminated with heavy-tailed Gaussian noise by
mean µ = 1 and σ2 = 0.01 and accompanied error scores between that and the original. Figure
6.35 is then our reconstruction attempts with cloud K-SVD using a sparsity of K = 3, 5, 7 , patch
size PS = 5× 5, 7× 7, 9× 9 and the number of atoms N = 50, 100, 200. We see significant noise
reductions with sparsity K = 3, a large patch size of PS = 9× 9 and a high number of dictionary
atoms N = 200. Even if K is high, the PS and N makes up for it because cloud K-SVD then
gets a larger pool of training data compared to a low PS and N .

82 CHAPTER 6. EXPERIMENTS AND RESULTS

Face Original Difference
2 : 14.67, MSE : 0.0096, PSNR : 20.19, SSIM : 0.56

Face with Gaussian Noise
2 = 0.01

Figure 6.34: Original image of Face, compared to the noisy version. σ2 = 0.01.

PS
=

(5
x5

),
N

=
50

PS
=

(7
x7

),
N

=
10

0

K = 3

PS
=

(9
x9

),
N

=
20

0

K = 5 K = 7

Noise level: 2 = 0.01

Figure 6.35: Visual representation of reconstructions after cloud K-SVD from noisy version of Face, at
varying M , N and K. σ2 = 0.01, td = 10, tp = 3, tc = 5, P = 4.

Figures 6.36 and 6.37 turns the heat down a bit, as we now set the noise variance to σ2 = 0.005.
The configuration is similar to that of 6.34 and 6.35 however.

6.3. EXPERIMENTS USING IMAGE PATCHES 83

Face Original Difference
2 : 10.44, MSE : 0.0048, PSNR : 23.15, SSIM : 0.69

Face with Gaussian Noise
2 = 0.005

Figure 6.36: Original image of Face, compared to the noisy version. σ2 = 0.005.

PS
=

(5
x5

),
N

=
50

PS
=

(7
x7

),
N

=
10

0

K = 3

PS
=

(9
x9

),
N

=
20

0

K = 5 K = 7

Noise level: 2 = 0.005

Figure 6.37: Visual representation of reconstructions after cloud K-SVD from noisy version of Face, at
varying M , N and K. σ2 = 0.005, td = 10, tp = 3, tc = 5, P = 4.

Figures 6.38 and 6.39 show the reconstruction of ”Face” with the least amount of noise as
σ2 = 0.001.

84 CHAPTER 6. EXPERIMENTS AND RESULTS

Face Original Difference
2 : 4.73, MSE : 0.0010, PSNR : 30.03, SSIM : 0.91

Face with Gaussian Noise
2 = 0.001

Figure 6.38: Original image of Face, compared to the noisy version. σ2 = 0.001.

PS
=

(5
x5

),
N

=
50

PS
=

(7
x7

),
N

=
10

0

K = 3

PS
=

(9
x9

),
N

=
20

0

K = 5 K = 7

Noise level: 2 = 0.001

Figure 6.39: Visual representation of reconstructions after cloud K-SVD from noisy version of Face, at
varying M , N and K. σ2 = 0.001, td = 10, tp = 3, tc = 5, P = 4.

We chose not to include execution times for the noisy experiments (2), because they mimic
the same trends as the ones in the noiseless case (1). It is no matter if training images are clean

6.3. EXPERIMENTS USING IMAGE PATCHES 85

or contaminated with additive noise, OMP and the collaborative K-SVD behave the same. All
timings are included in the source material.

Discussion

The purpose of these experiments was to measure how well cloud K-SVD did at learning geometric
structures in patches that had been extracted from either noiseless or noisy images. To get an
overall picture of the algorithm’s performance, we used eight different images to test the noiseless
case. However because of the hardware limitations of the cluster, we needed to downscale some
of them when testing. We start by looking at the effect of local versus cloud K-SVD on the
dictionary (1), results shown in figure 6.19. We observe that much like the test on synthetic data,
enabling the consensus step makes the individual dictionaries DDDi of each pod converge. Looking
at the reconstruction of the image itself, see figures 6.22 and 6.23, the overall results argue that
cloud and local K-SVD perform the same when reconstructing clean images. The China image
had the largest error when compared to the original, and Chelsea and Flower had the lowest
error. China is special, since it contains a lot of detailed straight lines, which proved difficult
to reconstruct. We also see that the higher variance of any image, see table 6.3, the greater an
overall MSE of the reconstructed image was observed when compared to the original, see figure
6.22.

Moving forward, we test the impact of setting sparsity using Castle. This image was used
because no downscaling was needed for a patch size of (5 × 5). The test was conducted with
sparsity K of XXX with values 3, 5 and 7. The reconstruction results, see figure 6.28, show that
higher sparsity means lower reconstruction error. This is of course expected, since more data
naturally would reconstruct with more details. The final reconstruction is seen in figures 6.25,
6.26 and 6.27.

After sparsity, we look at the data size for, mainly M and N , by changing the patch sizes
used from (5× 5) up to (9× 9). For this test we used only the Face image, because it did not
need downscaling. The reconstruction error, see figure 6.29, show that smaller patches leads to
a smaller error. In other words, the more data each patch or signal holds, the harder it is to
reconstruct said patch or signal from a dictionary. The reconstructed images are in figure 6.30,
where we also observe that the image becomes less detailed as each data signal increases in size.

Looking at execution times, see tables 6.4, 6.5 and 6.6, we notice a clear distinction between
local and cloud K-SVD. The biggest time difference is for the K-SVD step itself, as expected,
because the consensus step is embedded in the K-SVD. What might come as a surprise is the
increased time spent to do OMP when the number of consensus iterations is slightly increased.
We do not know the reason for this, but because the dictionary DDD is of more common nature
on the individual pod’s when consensus is enabled, it might be harder for OMP to reconstruct
compared to a very specialized dictionary. If we look further into situations where we change K
of XXX, data dimensions M and atoms N , we also observe consequences in execution times. For
the change in sparsity, we see that as we increase the sparsity, we prolong the time it takes to
complete the OMP step, while the K-SVD step only increase slightly. If we observe the change in
data size, M and N , we see that as it increases, the time it takes to complete K-SVD goes up as
well, while OMP stays the same.

After testing on noiseless images it is clear that both sparsity K of XXX and data sizes M and
N have a significant impact on the reconstruction process in different ways. We extended our
experiments to noisy images (2) using three levels of Gaussian noise on the Face image and only
using cloud K-SVD. The results are in figures 6.31, 6.32 and 6.33. They show, that the more
noise we induce in training images, the less detail we are able to properly reconstruct, since
keeping details will also keep noise. To give an example, exhibit the denoising of Face distorted
with Gaussian noise that had variance σ2 = 0.01 in figure 6.31. We note, that the denoising

86 CHAPTER 6. EXPERIMENTS AND RESULTS

effect comes when the patch size is set to (9 × 9) and sparsity is set to K = 3. Compared to
tests before, this should be the scenario with least detail maintained compared to the original,
however because the noise is so prominent, it is actually to our advantage. Compare this result
to the denoising of Face with Gaussian noise that had variance σ2 = 0.001 in figure 6.33. Here
we see the exact opposite, namely the best denoising effects show with a small patch size like
(5 × 5) and a high sparsity. Previous experiments point to that this setup (small patch sizes)
will maintain most detail compared to one with large patch sizes and small sparsity. This was
rather expected, since by only inducing a small amount of noise, the image still looks a lot like
our original. The images themselves are exhibited in figures 6.35, 6.37 and 6.39. The denoising
effect can be observed by looking at the images.

Through experiments, we find that when denoising images with cloud K-SVD, the parameters
of the algorithm need to be adjusted to the amount of noise in images. There is no clear and
correct configuration of cloud K-SVD. When the noise is severe, we have to remove a lot of detail
in order to reduce the noise, on the contrary when it is more manageable, we do not have to
remove that much detail to reduce it. Details can be effectively removed by increasing data/patch
sizes, M and N , and decreasing sparsity K. We can recover details better by doing the opposite,
that is decrease data/patch sizes, M and N , and increase sparsity K.

6.4 Experiments using medical images

Purpose

The final set of experiments will test if cloud K-SVD can remove noise from real medical images
that exhibit the hands and wrists of people suffering from the chronic condition rheumatoid
arthritis (RA). Noise and artifacts are often the result of patient motion, the scanner itself or
by the amount of joint changes in the images. Image quality is a crucial factor for doctors and
radiologists to measure disease progression and observe the amount of joint destruction it has
wrought, since this information is an indicator of disease activity in RA [83]. All training data has
been anonymized prior to evaluation and obtained as part of the DanACT research study with
permission to use it for laboratory tests and experiments, but not for redistribution. The DanACT
study was established in 2014 with the goal of estimating effectiveness and the safety of various
protocols for treating patients with RA. The study group includes rheumatology departments in
Aarhus, Silkeborg, Horsens, Gr̊asten, Svendborg and Odense, Denmark. We have the following
objectives in view:

� Measure how efficient cloud K-SVD is at removing additive white Gaussian noise and
unwanted artifacts from medical images.

� Measure if cloud K-SVD can remove noise and undesirable artifacts in the training images
without removing structures and information necessary for disease characterization. In
other words, can we reduce the amount of noise without sacrificing critical information such
as joint edges and visible bone erosions.

6.4. EXPERIMENTS USING MEDICAL IMAGES 87

Data and setup

All training images exist exclusively in noisy versions and all comparisons are therefore done
with their original noisy version. A single dataset consists of 330 images slices that stem from
concatenating three individual scans covering a total scan region of 2.7cm by capturing 110 image
slices with a length of 0.9cm each. This way the doctors archive a complete scan of the joints
of interest. Each dataset has a voxel2 size of 82× 82× 82µm, with resolutions varying between
scans. Increasing the image voxel size results in an increased signal-to-noise ratio, but it brings a
diminution in spatial resolution. For our experiments, we consider only the 2D representation of
the images for performance reasons.

Figure 6.40: Three noisy images from the dataset. (a) shows that joint change can cause noise in the
respective slices. (b) shows patient motion which causes noise that blurs the border of the
bone. (c) shows ring artifacts at the border region of the bone which can make it hard to
distinguish.

Examination of the image data reveals that we mostly are dealing with three kinds of noise
that all degrade image quality: The first and most common is addictive Gaussian noise, something
cloud K-SVD in theory should be excellent at reducing. The second kind of noise is patient
motion. When the individual moves his or her hand any point during the scan it is considered
patient motion. Its effects can causes blurring and stripe through the images as the second image
in figure 6.40 shows. It takes the scanner eight minutes to acquire all images in a single scan, and
it can be difficult for people to hold their hand or wrist still for that long. Thus patient motion
artifacts are highly present in the images. The last kind of noise is ring artifacts seen in the third
image in figure 6.40. These are typically caused by miscalibration of the scanner or by defective
detector elements [84]. They can be corrected or removed through proper scanner recalibration
or by postprocessing methods. The main problem with these ring artifacts is that they share
pixel intensity values with actual bone structures and radiologists can therefore find it difficult to
distinguish the two.

For our algorithm, things such as patient motion and ring artifacts can prove more problematic
than simple Gaussian noise, since there exist some correlation in those versions of noise and it
might reside in greater eigenvectors, which we normally want to maintain in the image.

For all experiments, we only test the cloud K-SVD configuration with number of pods P = 4
and consensus enabled, on the zoomed in image shown on Figure 6.41.

2A voxel is the 3D analogue of a pixel and relates to both the pixel size and thickness.

88 CHAPTER 6. EXPERIMENTS AND RESULTS

Image of interest

Zoomed in

Figure 6.41: Image of interest to be tested in the following experiments. The image has an overall bad
quality since all three versions of noise are embedded in the image. The zoomed image will
be used because of hardware limitations. In the zoomed version both Gaussian and ring
artifact noise are present.

Expectations

We expect the following observations to be expressed in the experiments:

� We expect to see effects of denoising in the medical images. However since all training
material has noise embedded directly in the data, we will not be able to measure cloud
K-SVD ’s effect the same way we did in section 6.3. The expectation is that there will be
improvements to the data by removing the noise with Gaussian characteristics.

Results

Figure 6.42 shows graphs for MSE, PSNR and SSIM scores for the recovered Ŷ̂ŶY as a function of
td iterations when compared to the original noisy YYY after cloud K-SVD. We see that trials with a
low patch size (5 × 5) and high sparsity K = 7 does reasonably well in all tests, whilst larger
patch sizes and low sparsity seem to struggle. PSNR results show notable lower numbers than
with patch learning, which indicate that CT training images contain considerable amounts of
noise, however cloud K-SVD seem to improve these as a function of iterations td. Figure 6.42
indicates that between four to six iterations is a rational setting, as improvements diminish after
this point.

Figure 6.43 shows actual reconstruction from noisy medical images exhibiting a bone at
different configurations of sparsity K, patch size PS and dictionary size N . Although difficult to
see, a higher sparsity setting retain some degree of meaningful details and unwanted artifacts in
the image, while a lower sparsity practically removes both.

Execution times when denoising medical images show the same trends as those from patch
learning without any noise. OMP and K-SVD are not affected by what training data we train
with, but rather the sparsity and patch size (dimensionality) of it. We refer to Table 6.4, 6.5 and
6.6 in section 6.3 for trends in execution times. All timings are per usual included in the source
material.

6.4. EXPERIMENTS USING MEDICAL IMAGES 89

0 2 4 6 8 10
Iteration

10 4

10 3

M
SE

(Y
)

CT Scan after Cloud K-SVD
MSE

0 2 4 6 8 10
Iteration

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

PS
NR

(Y
)

CT Scan after Cloud K-SVD
PSNR

0 2 4 6 8 10
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

(Y
)

CT Scan after Cloud K-SVD
SSIM

PS = (5x5), K = 3, N = 50
PS = (5x5), K = 5, N = 50
PS = (5x5), K = 7, N = 50
PS = (7x7), K = 3, N = 100
PS = (7x7), K = 5, N = 100
PS = (7x7), K = 7, N = 100
PS = (9x9), K = 3, N = 200
PS = (9x9), K = 5, N = 200
PS = (9x9), K = 7, N = 200

Figure 6.42: The MSE, PSNR and SSIM between the original signal YYY and the reconstructed signal Ŷ̂ŶY , of
the medical image, at different PS/M , N and K. td = 0, 1, . . . , 10, tp = 3, tc = 5, P = 4.

90 CHAPTER 6. EXPERIMENTS AND RESULTS
PS

=
(5

x5
),

N
=

50
PS

=
(7

x7
),

N
=

10
0

K = 3

PS
=

(9
x9

),
N

=
20

0

K = 5 K = 7

Figure 6.43: Visual representation of reconstructions after cloud K-SVD from noise-filled version of
medical image, at varying PS/M , N and K. td = 10, tp = 3, tc = 5, P = 4.

6.4. EXPERIMENTS USING MEDICAL IMAGES 91

Discussion

The purpose of these experiments was to test how well cloud K-SVD could denoise medical
images. Because of hardware limitations however, we were only able to test on a small portion
of a medical data in which the noise was embedded. We refrained from downscaling the image,
since that would alter the noise structure. Results from the process are in figure 6.43 and unlike
earlier tests, it is hard to verify whether cloud K-SVD has removed only noise or crucial details of
the image. We clearly see that our experiment could not remove the ring artifact in the upper
left corner. Ring artifacts were expected to be the hardest kind of noise to remove, since it has
clear structure unlike white Gaussian noise. By observing the corners of the images, we also see a
difference in the amount of Gaussian noise. The image with a patch size of (9× 9) and a sparsity
of K = 3 shows an overall improvement related to reducing Gaussian noise however at the cost of
details in the rest of the image. By checking errors between the original and reconstructed image,
see figure 6.42, we see that what was true for benchmark images, in section 6.3, is also true when
using medical ones. We therefore believe that by tweaking the parameters of the algorithm and
running on better hardware, cloud K-SVD would be able to improve these images even more.

92 CHAPTER 6. EXPERIMENTS AND RESULTS

Chapter 7

Discussion and conclusion

The chapter will present and discuss the lessons we learned during this master’s thesis from mostly
a practical standpoint, our conclusion and discuss eventual future work that naturally would
follow our work. The objective of this thesis was to implement and document cloud K-SVD in a
real distributed system for a good many types of data. In order to do so, we started by explaining
fundamental concepts and mathematics that concerned cloud K-SVD before documenting how
it actually worked, and investigating weather it was capable of denoising both benchmark and
real medical images to an acceptable standard. A lot goes into the design and implementation
of proper modern software, that should work in the cloud, be scalable under load and smoothly
deploy on new hardware, hence we spent time discussing all relevant technologies and methods
used to give the reader a better understanding of our work. Until now, we have presented our
implementation of cloud K-SVD in our environment with the constrains we chose to set and
enforce in order to present a tangible, transparent and applicable solution in the real world.
Obviously, we did face challenges and made interesting observations, which the next section will
discuss.

7.1 Lessons learned

We made some interesting discoveries and observations with the design, implementation and
results of cloud K-SVD that are worth putting into words.

Compressed sensing in cloud K-SVD
By advice of Arora et al. in [85], any K-SVD algorithm should smartly initialize the dictionary

DDD with i.i.d drawn measurements from a Gaussian distribution due to the same reasons as with
the sensing matrix ΦΦΦ in compressed sensing, namely the restricted isometry property (RIP). When
the dictionary DDD obeys the RIP, signal information is properly preserved because the dictionary
ensures an isometric dimensionality mapping of all sparse signals. When the dictionary satisfies
the RIP of order cK for some constant c and sparsity K, the RIP for a matrix DDD provides a
guarantee that we can obtain successful K-sparse recovery of a signal using a variety of algorithms,
like the OMP, and that the recovery process is stable in `2 under measurement noise [86]. We
made a single observation with DDD initialized to fixed deterministic scalar values (for example just
ones and twos) for all elements so that it basically had to start from scratch and saw inferior
results as opposed to using Gaussian measurements. Thus in practice, we used compressed sensing
theory when designing our experiments for cloud K-SVD.

93

94 CHAPTER 7. DISCUSSION AND CONCLUSION

The hunt for a global dictionary

The original cloud K-SVD algorithm was created with the purpose of reaching a global
consensus among network nodes of the dictionary DDD. To do so, cloud K-SVD was designed to use
a consensus algorithm in the power method step that gathered error information from all other
nodes before updating the dictionary with a largest error found between the node itself and all
other nodes. We implemented the averaging consensus in order to keep it simple, which have
turned out to be really effective in practical experiments. What we could gather from the original
cloud K-SVD paper, is that they only assume the network graph is connected, not complete.
Thus their configuration does not assume that all nodes can communicate directly, but rather
have to ask random neighbors nodes to retrieve residual error data. In our test setup, we assume
a complete node (pod) graph, so that every P pod can communicate with P − 1 pods. In case the
number of pods is P = 16, each single pod is able to communicate with 15 other pods. This is the
single biggest reason for the amount of time it takes to complete a cloud K-SVD iteration compared
to a local K-SVD one, but it ensures that all pods reach a consensus of the global dictionary.
What was not tested in the experiments was fewer and random pod communication links, which
we expect would make the execution faster but may deteriorate how quickly pod’s reach consensus.

The denoising effect

Cloud K-SVD is a dictionary learning algorithm designed for image classification with dis-
tributed workload in mind. However since the dictionary learning part uses sparse approximation
as a tool in the construction of a dictionary, we decided to experiment with one of the tra-
ditional features that sparse approximation algorithms have been used for in previous works,
namely denoising. This results in a algorithm with a few minor modifications, now able to
denoise natural images that have been distributed. Using cloud K-SVD for denoising, as doc-
umented in the experiments we have done, did prove success. We did hope to see a greater
denoising effect on the medical CT images in our experiments, than what turned out to be the
final result, however this thesis was always intended as a proof-of-concept about the effects of
denoising. The algorithm was proven on noisy benchmark images with a tangible amount of
training data available and have also shown the same effects on a medical image from a CT scanner.

Synchronization issues

When implementing cloud K-SVD, we did face a challenge with proper worker synchronization
that is worth mentioning. Recall that the algorithm iteratively updates atoms Ni in dictionary
Di by fetching residual error vectors from neighboring peers, such that its own approximation
of a signal and dictionary is swayed in direction of the global data Y rather than the local Yi.
The dictionary update step expects to pull residual vectors that correspond to the atom it is
currently updating, but because worker pods operate on different cluster hardware nodes that
are under unequal load, the amount of resources that are put at a pod’s disposal is different
from node to node. This meant that some cloud K-SVD iterations completed before others and
that pods made disjointed updates to their local dictionary. So when pod pi requests pod pj ’s
current residual vector for atom n1, pj could be at dictionary atom n2 and return the residual
of that instead! We saw two possible solutions to this: Either we had to force synchronization
after each atom update or store the residual vectors per atom in the database of the individual
worker pod. We chose the latter solution, because it allowed pods to continue execution even
if they were ahead of the pact and no unnecessary synchronization messages had to sent or received.

HTTP, streaming and WebSocket

In the current design we used the HTTP/TCP protocol for all communications between pods,
and the JSON data format to serialize payload data packets, however there exists alternative
protocols, such as HTTP streaming and WebSocket, that deserve some attention here. With

7.1. LESSONS LEARNED 95

traditional HTTP, we get a protocol that has broad support libraries (like AIOHTTP), supports
asynchronous operations in a request-response style and abstracts a lot of complexity from our
solution so that we can focus on business logic rather than data access logic. HTTP with TCP
would in many eyes, including our own, be the tool-of-choice to establish reliable connection paths
between a heterogeneous set of pods and exchange data in a connection-oriented way. Though
the simplicity come at a cost that includes some message overhead per request/response, works
only half-duplex (that is, data can only be sent one way at a time) and since cloud K-SVD relies
on repeatably sending and receiving consensus data, any additional overhead can quickly pile up.

Figure 7.1: The HTTP protocol and WebSocket
head-to-head with some key differences
that could benefit a solution with a lot of
data requests and responses. Credits to
the Windows Apps Team at Microsoft
for the image.

Another way of doing pod-to-pod commu-
nication is with HTTP streaming and Web-
Sockets protocols, that both have less overhead
than traditional HTTP. Streaming is a push-
style data transfer method that allows the web
server to continuously send data over a single
HTTP connection, that stays open indefinitely
and is only closed when the entire algorithm
has completed. With HTTP streaming, the
server holds on to the client connection and
keeps the response channel open, so that it can
push data through it. This way, the client can
listen for updates and receive them instantly
without opening or closing the connection each
time, as we do now with traditional HTTP.
Thus streaming reduces the number of HTTP
header messages and eliminates the need for
polling simply because it keeps the connection
open. A possible disadvantage of streaming is
the abundance of open connections we might
see and if a pod goes down or a network par-
tition occurs, connections would hang until
closed preemptively.

WebSocket is an application layer protocol
like HTTP (OSI model layer 7), but supports
full duplex (pods can send and receive data
simultaneously), uses a push-pull paradigm in-
stead of just pull, supports data pipelining
and behave like HTTP streaming when send-
ing data. That is, both use an underlaying
TCP/IP model to streamline payload and pro-
vide guarantees of transport reliability through
flow control, proper segmentation/desegmenta-
tion of packets and error checks. WebSockets
require more manual work to configure and
maintain compared to HTTP REST services1,
but can reduce message overhead and allow
pods to push new data as soon as it is ready.
See figure 7.1 for a brief summary of HTTP and WebSocket.

1Representational state transfer (REST), see: https://en.wikipedia.org/wiki/Representational state transfer

96 CHAPTER 7. DISCUSSION AND CONCLUSION

Memory use, downscaling and consensus

One particular downside of using IoT-hardware, with inherent resource constraints for some-
thing like cloud K-SVD, is that we had to constantly keep down the dimensionality of training
signals to not cause memory problems on the nodes. Large data loads, for example a natural
image in 400× 640 resolution, could cause severe out-of-memory exceptions and segmentation
faults on worker pods, so we had to carefully select which images we would use for patch learning
and in some cases apply a downscaling factor α to make it palatable for the system. Unfortunately,
downscaling is not really ideal here, because it actually blurs the image before any patch learning
or reconstruction work is done. This can make it hard to distinguish between downscaling
and cloud K-SVD effects when exhibiting the final result. One would think that creating more
pods would mitigate this, because the training signals would then be further split up at the
preprocessing level, however the physical memory on nodes does not increase or decrease with the
number of pods and for each new worker pod, Kubernetes has to set aside a pool of resources for
that new pod. The medical images were high in resolution as well, so we had to apply similar
tactics and make compromises to even demonstrate some degree of denoising, which is a bit
unfortunate. A way out is obviously getting better hardware and more memory, which we were
sadly not able to this time around.

For all experiments, we used averaging consensus to produce an average at worker pod pi for
pi+1 residual vectors, so that pi would steer its error in the direction of the general consensus
among pi+1 pods. This method can be extended in a way so that the accumulated error is stored
at individual pods and can be propagated throughout the network at some fixed interval. We call
this corrective consensus and accounted for its details in section 3.7, however we chose not to
re-evaluate our experiments with correct consensus, since we had already gotten sound results
in terms of dictionary convergence among pods with just simply average consensus. Though if
possible, we would definitively have made experiments to see if the error between dictionaries
(how incoherent they are) would improve faster using corrective consensus instead.

Compiling Docker images for ARM

When building Docker images, the lengthy part of the process is building so called wheels
(Python packages) for dependencies such as NUMPY, SCIPY and REDIS. This is especially true
when compiling for the ARMv7 architecture, as in our case, since the main Python repositories
do not contain precompiled versions of these libraries for ARMv7. It is a lot easier to get your
hands on precompiled libraries for more popular architectures, like the AMD64, than it is for
ARMv7. When building IoT-solutions with Docker, one should take the time to find precompiled
wheels for medium to large libraries, for example NUMPY, as they drastically reduce the time it
takes to build images.

Docker images and scaling

Because we bundle the application code and dependencies into Docker images (one for each
type of pod), the entire application can be deployed anywhere on any Docker-supporting Kuber-
netes cluster, for example in at lab setup on more capable hardware or at a cloud provider like
Amazon Web Services (AWS) or Google Cloud that provide a plug-and-in cluster for applications.
The reason we did not use a cloud provider is mainly due to the costs associated with ordering
and managing a cluster, even a small one, and since an IoT-platform like four Raspberry Pi’s
in a cluster with adequate memory and processing power is actually enough to make a sound
demonstration of cloud K-SVD. Also the software industry, developers and system administrators
are becoming increasingly attracted to cloud-technology and the paradigm behind it for building
applications, so it makes sense to embrace such technologies (Docker and Kubernetes) when
building any application today.

7.2. CONCLUSION 97

Kubernetes in general, IoT and K3S
Kubernetes is used as the management tool for orchestrating the pods in the cluster. Kuber-

netes did show to be surprisingly problematic to configure on an IoT-platform, when you factor
in the mine of guides there exists on the Internet. We ran into problems with different Linux
operating-systems and issues with K8S (the full Kubernetes software suite) that had trouble
running on the Raspberry Pi’s. By investigating and testing of several operating-systems and
versions of Kubernetes, we wrote chapter 5, which takes a step back and looks at the pros and
cons we saw with different operating-systems and versions. The real problem is that Kubernetes
is still in experimental phase when it comes to IoT/Linux and it comes bundled with many
redundant things as well, that you may not need for a small setup. We ended up finding a
scaled-down version of Kubernetes called K3S. The 1.0 was released mid-project and targeted
low-cost hardware, for such systems like a Raspberry Pi cluster. K3S did show itself as a very able
Kubernetes version, since it is lightweight and easy to set up with a utility tool called K3SUP.

The overall impression of using Kubernetes is that, when it is already configured and working
properly, it is excellent for software deployments, especially when you develop for a microservice
architecture. However the hurdle it is to get to that point, where everything just works and runs
flawless, without being an expert in Linux, is quite tedious and problematic. Especially if you are
using low-cost hardware that K8S is not made for.

7.2 Conclusion

In this thesis, we have documented and described how to design, implement and test the
dictionary learning algorithm cloud K-SVD on a real distributed computer system for solving
sparse approximation and dictionary learning problems. For the implementation, we configured
our own Kubernetes cluster on four Raspberry Pi nodes and deployed a total of three Docker
images that made up our application. We showed with experiments that simple synthetic data
can be used to train and verify the behavior of cloud K-SVD and that such data is enough to
demonstrate convergence of heterogeneous local dictionaries to a common one. As a novelty, we
then extended our experiments and demonstrated cloud K-SVD’s ability to learn a dictionary
from a mine of natural image patches in order to reconstruct both benchmark and real medical
images that had been contaminated with noise. In general, we considered three variants of the
algorithm (centralized K-SVD, local K-SVD and cloud K-SVD) to compare their strengths and
weaknesses in a distributed setting. We had to make certain design choices when implementing
and testing cloud K-SVD on a low-cost IoT-setup, which include setting runtime memory and
processing power limitations on nodes and downscaling a portion of our test images to make
it viable, however we were still able to demonstrate core aspects and applications of sparse
approximation and dictionary learning with cloud K-SVD on real data. More work is needed
to demonstrate viability with full-sized data sets, which necessarily has to be on a system with
adequate resources, and also to explore other consensus algorithms and networks protocols that
can help reduce the network communications costs in cloud K-SVD.

98 CHAPTER 7. DISCUSSION AND CONCLUSION

7.3 Future work

For future work, there exists many possible adaptations and changes that can be made to cloud
K-SVD and our system. Here we will give some thoughts on possible improvements and elaborate
on where to continue.

Communication protocols like HTTP streaming or WebSockets, mentioned in section 7.1,
could have a potential impact on reducing the time each consensus step takes in cloud K-SVD
over traditional HTTP. By streaming data over a single open connection, or by limiting some of
the data transfer overhead, it could reduce network communication costs.

Consensus iterations have shown to be very a time consuming and expensive affair when
every node (pod) needs to communicate with all its neighbors, as implemented with the averaging
consensus protocol, detailed in section 3.7. Further investigation and experiments with consensus
algorithms and neighbor communication could have a significant say in accelerating the consensus
iteration part.

Sparse approximation is used to produce a signal matrix in cloud K-SVD. We implemented
the greedy orthogonal matching pursuit (OMP) algorithm, detailed in section 3.5, which is a
very effective and well-tested at making sparse approximations. There exists a different branch
of algorithms, that differ from greedy, known as convex optimization methods, which should be
evaluated via actual experiments as well to see if they where able to da better job than OMP.

Hardware limitations have been a recurring problem while testing on real images, which
meant we had to downscale or crop several training images in our experiments. Moving to a
more powerful hardware platform would allow testing of images in full resolution and evaluate
the denoising effects on a bigger scale.

Classification is a hot topic in machine-learning today and is also what cloud K-SVD was
originally designed for [9] [10]. Using cloud K-SVD to solve a classification problem may show
new and interesting results when done in a real distributed setup.

Online dictionary learning updates node dictionaries sequentially in response to streaming
data. In our solution, we flush all reminiscences of previous training data between experiments
and we do not consider scenarios, where the dictionary is remembered and only improved when
new training data becomes available. Online learning would be an interesting feature to add next
and would not require that much extra work.

Nomenclature

Numbers

N Quantity of elements in sparse representation of signal N �M

M Quantity of elements in non-sparse representation of signal M � N

Q Quantity of measurements

K Sparsity (quantity of non-zero elements)

ε Model deviation or error

λ Lagrange multiplier or eigenvalue

H Quantity of nodes in distributed setup

P Quantity of pods in distributed setup

Qi Quantity of measurements for node i i = 1, 2, . . . ,H

Vectors

zzz Measurement vector of single raw data zzz ∈ RN

zzzi Single row or column of the matrix ZZZ, where i represents the entry

xxx K-sparse signal vector xxx ∈ RN

x̂̂x̂x Recovered/Reconstructed signal, estimate of original xxx x̂̂x̂x ∈ RN

xxxi Single row or column of the matrix XXX, where i represents the entry

yyy Non-sparse representation of xxx yyy ∈ RM

yyyi Single row or column of the matrix YYY , where i represents the entry

ddd Single row or column DDD, often written as dddi, where i represents the entry

ψψψ Single row or column ΨΨΨ, often written as ψψψi, where i represents the entry

φφφ Single row or column ΦΦΦ, often written as φφφi, where i represents the entry

qqq The dominant eigenvector

Matrices

ZZZ Multi measurement vector of multiple zzz-signals ZZZ ∈ RN×Q

XXX Multi measurement vector of multiple xxx-signals XXX ∈ RN×Q

99

100 NOMENCLATURE

X̂̂X̂X Recovered/Reconstructed multi measurement vector, estimate of original XXX X̂̂X̂X ∈ RN×Q

XXXi Local multi measurement vector XXX ∈ RN×Qi

YYY Multi measurement vector of multiple yyy-signals YYY ∈ RM×Q

YYY i Local multi measurement vector YYY ∈ RM×Qi

DDD The dictionary DDD ∈ RM×N

DDDi Local dictionary of pod i DDD ∈ RM×N

ΨΨΨ The orthonormal basis ΨΨΨ ∈ RN×N

ΦΦΦ The measurement matrix, also represented as a dictionary ΦΦΦ ∈ RM×N

EEE The residual matrix, also known as the error matrix

MMM Positive-semidefinite residual matrix MMM = EEEEEET

UUU Left unitary matrix of standard SVD

∆∆∆ Diagonal matrix of standard SVD

VVV Right unitary matrix of standard SVD

WWW Doubly stochastic weight matrix

PPP Restriction operator

Formula

`p The p-norm

`p,q The mixed p,q-norm

`0 The quasinorm

`1 The Manhattan Distance or Taxicab norm

`2 The Euclidean norm

`∞ The infinity norm

rsupp(x) The row-support of vector x, indexes with non-zero entries

µ(x) Coherence of matrix x

µ(x1, x2) Coherence between matrix x1 and matrix x2

x† The conjugate transpose of matrix x

Other Symbols

Rx Vector set with x elements

Rx1×x2 Matrix set with x1 rows and x2 columns

Bibliography

[1] Kevin Taylor-Sakyi. Big Data: Understanding Big Data. CIM Magazine, 11(1), 2016.

[2] Chencheng Li, Pan Zhou, Yingxue Zhou, Kaigui Bian, Tao Jiang, and Susanto Rahardja.
Distributed Private Online Learning for Social Big Data Computing over Data Center
Networks. 2016 IEEE International Conference on Communications, ICC 2016, 2016.

[3] Alexander Bertrand and Marc Moonen. Distributed Adaptive Node-Specific Signal Estimation
in Fully Connected Sensor Networds - Part I: Sequential Node Updating. IEEE Transactions
on Signal Processing, 58(10):5277–5291, 2010.

[4] Alexander Bertrand and Marc Moonen. Distributed Adaptive Node-Specific Signal Estimation
in Fully Connected Sensor Networks - Part II: Simultaneous and Asynchronous Node Updating.
IEEE Transactions on Signal Processing, 58(10):5292–5306, 2010.

[5] Joel Sole, Rajan Joshi, Nguyen Nguyen, Tianying Ji, Marta Karczewicz, Gordon Clare, Félix
Henry, and Alberto Duenas. Transform coefficient coding in HEVC. IEEE Transactions on
Circuits and Systems for Video Technology, 22(12):1765–1777, 2012.

[6] Gary J. Sullivan, Jens Rainer Ohm, Woo Jin Han, and Thomas Wiegand. Overview of the
high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems
for Video Technology, 22(12):1649–1668, 2012.

[7] Jens Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas Wiegand.
Comparison of the coding efficiency of video coding standards-including high efficiency
video coding (HEVC). IEEE Transactions on Circuits and Systems for Video Technology,
22(12):1669–1684, 2012.

[8] Liquan Shen, Ping An, and Zhi Liu. Context-adaptive based CU processing for 3D-HEVC.
PLoS ONE, 12(2):1–23, 2017.

[9] Haroon Raja and Waheed U. Bajwa. Cloud K-SVD: A Collaborative Dictionary Learning
Algorithm for Big, Distributed Data. IEEE Transactions on Signal Processing, 64(1):173–188,
2016.

[10] Sakth Aleti, Augustus Chang, and Parth Parikh. An Introduction to Cloud K-SVD. page 5,
2014.

[11] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation Michal. IEEE Transactions on Signal
Processing, 54(11):4311–4322, 2006.

[12] Gabriel Peyré. The Numerical Tours of Signal Processing - Advanced Computational Signal
and Image Processing. Signal Processing, pages 1–15, 2010.

101

102 BIBLIOGRAPHY

[13] Michael Elad and Michal Aharon. Image Denoising Via Sparse and Redundant Representa-
tions Over Learned Dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745,
2011.

[14] Jianshu Chen, Zaid J. Towfic, and Ali H. Sayed. Dictionary Learning Over Distributed
Models. IEEE Transactions on Signal Processing, 63(4):1001–1016, 2015.

[15] Jianshu Chen, Zaid J. Towfic, and Ali H. Sayed. Online dictionary learning over distributed
models. 2014 IEEE International Conference on Acoustic, Speech and Signal Processing
(ICASSP), pages 3902–3906, 2014.

[16] Stéphane Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier Inc., 2009.

[17] B Y H Nyquist. Certain Topics in Telegraph Transmission Theory. pages 617–644, 1949.

[18] Claude E. Shannon. Communication in the Presence of Noise. Proceedings of the IRE,
37(1):10–21, 1949.

[19] Emmanuel J. Candès. Compressive sampling. International Congress of Mathematicians,
ICM 2006, 3:1433–1452, 2006.

[20] Richard G. Baraniuk. Compressive sensing. Handbook of Mathematical Methods in Imaging:
Volume 1, Second Edition, (July):205–256, 2015.

[21] E Candes, J Romberg, and Terence Tao. Stable Signal Recovery from Incomplete and
Inaccurate Measurements. Science, 40698(8):1–15, 2005.

[22] Ayush Bhandari. Introduction to Sparse Approximation.

[23] Emmanuel Candes, Mark Rudelson, Terence Tao, and Roman Vershynin. Error Correction
via Linear Programming. pages 668–681, 2010.

[24] Noam Shental, Amnon Amir, and Or Zuk. Identification of rare alleles and their carriers
using compressed se(que)nsing. Nucleic Acids Research, 38(19):1–22, 2010.

[25] M Lustig, Jh Lee, Dl Donoho, and Jm Pauly. Faster Imaging with Randomly Perturbed,
Undersampled Spirals and L1 Reconstruction. Proceedings of the 13th . . . , page 50, 2005.

[26] Joel A. Tropp. Greed is Good: Algorithmic Results for Sparse Approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

[27] Ren Huamin, Pan Hong, Søren Ingvor Olsen, and Thomas B. Moeslund. Greedy vs. L1
Convex Optimization in Sparse Coding. 2015.

[28] Dror Baron, Marco F. Duarte, Michael B. Wakin, Shriram Sarvotham, and Richard G.
Baraniuk. Distributed Compressive Sensing. Chinese Journal of Sensors and Actuators,
26(10):1446–1452, jan 2009.

[29] M.F. Duarte, S. Sarvotham, D. Baron, M.B. Wakin, and R.G. Baraniuk. Distributed
Compressed Sensing of Jointly Sparse Signals. Conference Record of the Thirty-Ninth
Asilomar Conference onSignals, Systems and Computers, 2005., pages 1537–1541, 2005.

[30] Qun Wang and Zhiwen Liu. A novel distributed compressed sensing algorithm for multichannel
Electrocardiography signals. Proceedings - 2011 4th International Conference on Biomedical
Engineering and Informatics, BMEI 2011, 2:607–611, 2011.

BIBLIOGRAPHY 103

[31] Dennis Sundman, Saikat Chatterjee, and Mikael Skoglund. Parallel pursuit for distributed
compressed sensing. 2013 IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2013 - Proceedings, pages 783–786, 2013.

[32] Donghao Wang, Jiangwen Wan, Junying Chen, and Qiang Zhang. An Online Dictionary
Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks. Sensors
(Switzerland), 16(10), 2016.

[33] Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Implications of
Historical Trends in the Electrical Efficiency of Computing. IEEE Annals of the History of
Computing, 33(3):46–54, 2011.

[34] Chip Walter. Kryder’s law. Scientific American, 293(2):32–33, 2005.

[35] Gordon E. Moore. Cramming more components onto integrated circuits. Journal of Integrated
Design and Process Science, 38(8), 1965.

[36] Symeon Chouvardas, Yannis Kopsinis, and Sergios Theodoridis. An online algorithm for
distributed dictionary learning. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, 2015-Augus:3292–3296, 2015.

[37] Farhad Pourkamali Anaraki and Shannon M. Hughes. Compressive K-SVD. ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 5469–5473, 2013.

[38] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

[39] Richard Baraniuk, Mark A. Davenport, Marco F. Duarte, and Chinmay Hedge. An Intro-
duction to Compressive Sensing. pages 1–112, 2011.

[40] E.J. Candes and M.B. Wakin. An Introduction To Compressive Sampling. IEEE Signal
Processing Magazine, 25(2):21–30, 2008.

[41] Esa Ollila. Robust Simultaneous Sparse Approximation. Modern Nonparametric, Robust
and Multivariate Methods, 2015.

[42] Yonina C. Eldar and Gitta. Kutyniok. Compressed Sensing: Theory and Applications.
Cambridge University Press, 2012.

[43] Emmanuel J. Candes and Terence Tao. Decoding by Linear Programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005.

[44] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[45] Richard Metzler and Hidegoro Nakano. Quasi-norm spaces. 1964.

[46] Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer Publishing Company, Incorporated, 1st edition, 2010.

[47] David L. Donoho. For Most Large Underdetermined Systems of Equations, the Minimal
L1-norm Near-Solution Approximates the Sparsest Near-Solution. Communications on Pure
and Applied Mathematics, 59(7):907–934, 2006.

[48] Ronald A Devore. Deterministic constructions of compressed sensing matrices. 23:918–925,
2007.

104 BIBLIOGRAPHY

[49] Piotr Indyk. Explicit constructions for compressed sensing of sparse signals. Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, page 7, 2007.

[50] Matthew A. Herman and Thomas Strohmer. High-resolution radar via compressed sensing.
IEEE Transactions on Signal Processing, 57(6):2275–2284, 2009.

[51] Joel A. Tropp. Norms of random submatrices and sparse approximation. Comptes Rendus
Mathematique, 346(23-24):1271–1274, 2008.

[52] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. 58(1):267–288, 1996.

[53] Joel A. Tropp, Anna C. Gilbert, and Martin J. Strauss. Algorithms for simultaneous sparse
approximation. Part I: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.

[54] Joel A. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation.
Signal Processing, 86(3):589–602, 2006.

[55] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee,
and Terrence J Sejnowski. Dictionary Learning Algorithms for Sparse Representation. 15(2),
2003.

[56] Michael S. Lewicki and Bruno A. Olshausen. Probabilistic framework for the adaptation and
comparison of image codes. Journal of the Optical Society of America A, 16(7):1587, 1999.

[57] Dmitry M Malioutov, Müjdat Çetin, and Arthur C Smith. A Sparse Signal Reconstruc-
tion Perspective for Source Localization with Sensor Arrays. Ieee Transactions on Signal
Processing, 53(8):3010–3022, 2003.

[58] Arthur E.C. Pece. The Problem of Sparse Image Coding. Journal of Mathematical Imaging
and Vision, 17(2):89–108, 2002.

[59] B. K. Natarajan. Sparse approximate solutions to linear systems. 24(2):227–234, 1995.

[60] Stephane G. Mallat and Zhifeng Zhang. Matching Pursuits With Time-Frequency Dictionaries.
IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

[61] Tong Wu, Anand D. Sarwate, and Waheed U. Bajwa. Active Dictionary Learning for Image
Representation. Unmanned Systems Technology XVII, 9468:946809, 2015.

[62] Emmanuel J. Candès and David L. Donoho. New Tight Frames of Curvelets and Optimal
Representations of Objects with Piecewise C2 Singularities. Communications on Pure and
Applied Mathematics, 57(2):219–266, 2004.

[63] G. Davis, S. Mallat, and M. Avellaneda. Adaptive Greedy Approximations. Constructive
Approximation, 13(1):57–98, 1997.

[64] Ron Rubinstein, Alfred M. Bruckstein, and Michael Elad. Dictionaries for Sparse Represen-
tation Modeling. Proceedings of the IEEE, 98(6):1045–1057, 2010.

[65] Mahdi Ataee, Hadi Zayyani, Massoud Babaie-Zadeh, and Christian Jutten. Parametric
dictionary learning using steepest descent. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, pages 1978–1981, 2010.

[66] Dorina Thanou, David I. Shuman, and Pascal Frossard. Learning Parametric Dictionaries
for Signals on Graphs. IEEE Transactions on Signal Processing, 62(15):3849–3862, 2014.

BIBLIOGRAPHY 105

[67] Diego Ongaro and John Ousterhour. In Search of an Understandable Consensus Algorithm
(Extended Version). page 18, 2014.

[68] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked
Multi-Agent Systems. Proceedings of the IEEE, 98(7):1354–1355, 2010.

[69] Reza Olfati-Saber and Richard M. Murray. Consensus Problems in Networks of Agents
With Switching Topology and Time-Delays. Automatic Control, IEEE Transactions on,
49(9):1520–1533, 2004.

[70] Yin Chen, Roberto Tron, Andreas Terzis, and Rene Vidal. Corrective consensus with
asymmetric wireless links. Proceedings of the IEEE Conference on Decision and Control,
pages 6660–6665, 2011.

[71] Alireza Tahbaz-Salehi and Ali Jadbabaie. On Consensus Over Random Networks. 44th
Annual Allerton Conference on Communication, Control, and Computing 2006, 3:1315–1321,
2006.

[72] Yin Chen, Roberto Tron, Andreas Terzis, and Rene Vidal. Corrective consensus: Converging
to the exact average. Proceedings of the IEEE Conference on Decision and Control, pages
1221–1228, 2010.

[73] Gene H. Golub and Charlese F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 2013.

[74] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. page 17, 1999.

[75] Márk; Jelasity, Geoffrey Canright, and Kenth Engø-Monsen. Asynchronous Distributed
Power Iteration with Gossip-based Normalization. Euro-Par 2007, pages 514–525, 2007.

[76] Márk Jelasity, Rachid Guerraoui, Anne Marie Kermarrec, and Maarten Van Steen. The Peer
Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementations.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 3231:79–98, 2004.

[77] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-Based Aggregation in Large
Dynamic Networks. ACM Transactions on Computer Systems, 23(3):219–252, 2005.

[78] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit: Recursive
Function Approximat ion with Applications to Wavelet Decomposition. Conference Record
of the Asilomar Conference on Signals, Systems & Computers, 1:40–44, 1993.

[79] Haroon Raja and Waheed U. Bajwa. A convergence analysis of distributed dictionary learning
based on the K-SVD algorithm. IEEE International Symposium on Information Theory -
Proceedings, 2015-June:2186–2190, 2015.

[80] Christian Horsdal Gammelgaard. Microservices in .NET Core with examples in Nancy.
Manning Publications Co., 2017.

[81] Marko Luksa. Kubernetes in Action. Manning Publications Co., 2018.

[82] Daniel Zoran and Yair Weiss. Scale invariance and noise in natural images. Proceedings of
the IEEE International Conference on Computer Vision, pages 2209–2216, 2009.

106 BIBLIOGRAPHY

[83] Josef S. Smolen, Daniel Aletaha, and Iain B. McInnes. Rheumatoid arthritis. The Lancet,
388(10055):2023–2038, 2016.

[84] F. Edward Boas and Dominik Fleischmann. CT artifacts: Causes and reduction techniques.
Imaging in Medicine, 4(2):229–240, 2012.

[85] Sanjeev Arora, Rong Ge, and Ankur Moitra. New Algorithms for Learning Incoherent and
Overcomplete Dictionaries. Journal of Machine Learning Research, 35:779–806, 2014.

[86] Tong Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions
on Information Theory, 57(9):6215–6221, 2011.

[87] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. Image
Quality Assessment: From Error Visibility to Structural Similarity. IEEE TRANSACTIONS
ON IMAGE PROCESSING, 13(4):13, 2004.

Appendix A

Image and signal quality assessment
metrics

The `2 norm of the difference between signals Y and Ŷ :

`2 =
(∑

(Y − Ŷ)2
)1/2

(A.1)

The total mean square error (MSE) is defined as [65]:

MSE =
1

N
F (D) =

1

N
‖ Y −DX ‖22=

1

N

N∑
r=1

‖ yr −Dxr ‖22 (A.2)

where N is the number of estimates and F is a cost function that can estimate the effectiveness
of the dictionary to approximate the signal well in this example and is explicitly dependent on
the dictionary matrix. For image recovery, we view the MSE as the error between an original
noise-free w × h monochrome gray-scaled image I and its noisy approximation Î:

MSE =
1

wh

w−1∑
i=0

h−1∑
j=0

[I(i, j)− Î(i, j)]2 (A.3)

We consider the peak signal-to-noise ratio (PSNR) as well for images which is a ratio between
the maximum possible power of a signal and the power of noise that changes the accuracy of its
representation measured in terms of the logarithmic decibel scale. Using the definition of MSE in
A.3, the PSNR (in dB) is defined as:

PSNR = 10× log10

(MAX2
I

MSE

)
(A.4)

where MAXI is the maximum possible pixel value of the image, i.e. MAXI = 2B − 1 where
B is bits per sample. For example if an image is represented using 8 bits per sample, the MAXI

is 255.

Lastly we consider the structural similarity (SSIM) metric, which is a perception-based model
that calculates an index for the similarity between two images. That is, the SSIM an initial
uncompressed reference image without distortion and a received second image that can be distorted.
The difference with respect to the former metrics (MSE and PSNR) is that these approaches
estimate absolute-error, while SSIM considers image degradation as perceived change in structural
information, luminance masking and contrast masking terms[87]. Structural information relates
to a perception that the amount of inter-dependency between pixels is strong when they are
spatially close. Such dependencies contain important information about the structure of objects

107

108 APPENDIX A. IMAGE AND SIGNAL QUALITY ASSESSMENT METRICS

in the image. Luminance masking means that image distortions are often less visible in bright
regions, while contrast masking means that distortions appear less visible where there is a lot
of activity in the image. The SSIM index is calculated on various windows of an image. The
measure between two equal-sized windows a and b of the same width and height is defined as:

SSIM(a, b) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

y + c1)(σ2
a + σ2

b + c2)
(A.5)

where µa is the average of a, µb is the average of b, σ2
a is the variance of a, σ2

b is the variance
of b, σab is the covariance of a and b, c1 = (k1 × L)2, c2 = (k2 × L)2 are variables to stabilize the
division and L is the dynamic range of the pixel values, same as MAXI for PSNR. By default
k1 = 0.01 and k2 = 0.03. More information about the index calculation can be find in a paper by
Wang et al. in [87, chapter section III-B].

Appendix B

Configuring Kubernetes on a
multi-node setup

This section will explain how we installed and configured our own Kubernetes cluster on four
Raspberry Pi nodes. The purpose was to create a local distributed environment, that would
emulate a real-world cloud setting and because the university provided a set of Raspberry Pi
nodes free of charge. Thanks to excellent work by enthusiasts like Lucas Käldström, Kasper
Nissen, Alex Ellis and many more with their respective projects, binaries and scripts already exist
to deploy and setup a multi-node cluster in many ways. To start with, we used the following
hardware in our setup:

Hardware used for the cluster:

� 4 × Raspberry Pi 4 Model B 4GB RAM
� 4 × Raspberry Pi official power supplies
� 3 × 16GB SD cards (for the worker nodes)
� 1 × 32GB SD card (for the master node)
� 1 × 5-Port 10/100/1000 Ethernet switch
� 4 × Ethernet cables
� 1 × Wireless Router
� A Windows computer with a Linux VM installed

The installation has been inspired primarily by such guides as ”Will it cluster? K3S on your
Raspberry Pi”1 a blog guide by Alex Ellis and ”k3sup (said ’ketchup’)”2 a GitHub repository for
an installation package by Alex Ellis as well.

The hardware setup of the cluster can be seen in figure B.1. The four Raspberry Pi’s are
connected through the Ethernet switch, which then connects to the wireless router. This is then
connected to the Internet and a regular Windows computer is able to connect locally with the
Kubernetes cluster through a wireless connection to the router.

To start with, all Raspberry Pi’s should be booted on an SD card with an operating-system
installed that supports Kubernetes. Different OS’s have been tested, but the one used in the
final setup was a Raspbian Buster Lite version released in 2019-09-26. Raspbian Buster Lite is a
barebone version of the Raspbian operating-system, which is the official Linux OS for Raspberry
Pi3.

1https://blog.alexellis.io/test-drive-k3s-on-raspberry-pi/
2https://github.com/alexellis/k3sup
3https://www.raspberrypi.org/downloads/raspbian/

109

https://blog.alexellis.io/test-drive-k3s-on-raspberry-pi/
https://github.com/alexellis/k3sup
https://www.raspberrypi.org/downloads/raspbian/

110 APPENDIX B. CONFIGURING KUBERNETES ON A MULTI-NODE SETUP

node11
Master node

node12
Worker node

node13
Worker node

node14
Worker node

Kubernetes Cluster

Windows
ComputerInternet

Wireless
ConnectionEthernet Switch Wireless Router

Figure B.1: Kubernetes Cluster Hardware Setup.

To flash the Raspbian Buster Lite OS onto the four SD cards, we used balenaEtcher4 from a
Windows computer. Before inserting the SD cards, an empty file named ’ssh’ was created in the
/Boot folder of the newly flashed SD cards. The SD cards were then unmounted and inserted into
their respected Raspberry Pi’s, the 32GB is inserted into the Raspberry Pi that is intended to
become the master node in Kubernetes and the remaining three 16GB SD cards are inserted into
the three Raspberry Pi’s intended to become worker nodes. All Raspberry Pi’s are then turned
on.

We entered th each Raspberry Pi’s via SSH to take note for its LAN IP-address. One can also
connect a monitor to them and note the IP-address at startup. These are listed in the itemize
below for completeness. Ideally, these IP’s should be static:

� 192.168.1.151
� 192.168.1.152
� 192.168.1.153
� 192.168.1.154

To communicate over SSH, we used Putty5 but any SSH connection tool will suffice like
PowerShell. Log in with username ”pi” and password ”raspberry”. Before configuring the
Raspberry Pi’s, we went to update their date and time. We did this semi-manually using the
commands as shown in listing B.1. The timezone may vary depending on your location.

Listing B.1: Raspberry Pi: Manual time and date setup.

sudo cp /usr/share/zoneinfo/Europe/Copenhagen /etc/localtime

sudo date -s "$(wget -qSO - --max -redirect =0 google.com 2>&1 \

| grep Date: | cut -d’ ’ -f5 -8)Z"

To change the Raspberry Pi’s configuration, enter the command sudo raspi-config and
configure the following:

� Set the GPU memory split to 16mb.

4https://www.balena.io/etcher/
5https://www.putty.org/

https://www.balena.io/etcher/
https://www.putty.org/

111

� Change the hostname to something different from each other, like node11, node12 etc.
� Change the password for the pi user (we used ”dndmasters”).
� Change the Internet location.

We now need to enable container features in the kernel, so enter the command sudo nano

/boot/cmdline.txt and add the text in listing B.2 to the end of the line. Save and exit by using
Ctrl + X.

Listing B.2: Raspberry Pi: Setup cgroup.

cgroup_enable=cpuset cgroup_memory =1 cgroup_enable=memory

The Raspberry Pi’s are now configured and ready to be made into a Kubernetes cluster of
one master and three worker nodes. We will not be needing a direct SSH connection to the nodes
anymore, as we will be using a Linux virtual-machine installed locally on a Windows computer
for the rest of this guide.

We decided to use K3S, which is a lightweight version of Kubernetes without Enterprise-grade
packages and fewer dependencies. K3S is very useful for small setups and IoT-systems such as
a Raspberry Pi cluster. To install K3S we used k3sup, which is a tool that uses SSH to install
K3S on a remote Linux host. To be able to use k3sup, we needed to generate an SSH-key and
distribute it to all nodes in the cluster, so that the k3sup tool can do its work. The commands to
do so can be seen in listing B.3.

Listing B.3: Linux VM: SSH-key installation on Raspberry Pi’s.

ssh -keygen

ssh -copy -id pi@192 .168.1.151

ssh -copy -id pi@192 .168.1.152

ssh -copy -id pi@192 .168.1.153

ssh -copy -id pi@192 .168.1.154

Now we are ready to install K3SUP on the Linux VM. Open a terminal and write the
commands shown in listing B.4.

Listing B.4: Linux VM: K3SUP setup on Linux.

curl -sLS https :// get.k3sup.dev | sh

sudo install k3sup /usr/local/bin/

k3sup --help

You should be presented with the different possible commands that can be used with K3SUP.
What we are mostly interested in is the install and join commands. First create the master
node by writing the install command like shown in listing B.5.

Listing B.5: Linux VM: k3sup install to sertup master node.

k3sup install --user pi --ip 192.168.1.151

112 APPENDIX B. CONFIGURING KUBERNETES ON A MULTI-NODE SETUP

When the command has been run you should be able to setup the worker nodes using the
join command as shown in listing B.6.

Listing B.6: Linux VM: k3sup join to sertup worker nodes.

k3sup join --server -user pi --server -ip 192.168.1.151 \

--user pi --ip 192.168.1.152

k3sup join --server -user pi --server -ip 192.168.1.151 \

--user pi --ip 192.168.1.153

k3sup join --server -user pi --server -ip 192.168.1.151 \

--user pi --ip 192.168.1.154

After a couple of minutes the Raspberry Pi’s should be up and running. To be able to use
kubectl directly from the Linux VM, we can setup kubectl using the kubeconfig that was
returned after the master node completed setup following k3sup install. The file may be
protected which can give some problems when kubectl tries to use for example the config file.
What we did was make a copy of the file named kube.config. This was done using nano to access
the file and then save it with the name kube.config. Afterwards the commands shown in listing
B.7 can be run to check whether the new configuration has been accepted and is working.

Listing B.7: Linux VM: Setting up kubectl config file.

export KUBECONFIG =/home/<your user >/kube.config

kubectl get node

If kubectl was installed correctly and K3S is working properly, the terminal should display
all nodes of the Kubernetes cluster with their name, status, roles, age and version. The result of
the command is in B.2.

Figure B.2: Linux VM: kubectl get node.

By running the command kubectl get node -o wide the terminal should display all nodes
of the Kubernetes cluster with more information regarding internal and external IP’s, OS-, kernel-
and container-versions. The result of the command is in B.3.

113

Figure B.3: Linux VM: kubectl get node -o wide.

Since we are configuring an experimental setup for lab tests only, we promote the default
service-account to administrator so that pods will be able to query all endpoints at the Kubernetes
API for information, see listing B.8. However in an enterprise or production environment any
service-account should have the least privileges assigned as possible and not be a member of the
administrator role.

Listing B.8: Admin role for default service account.

kubectl create clusterrolebinding cluster -system -default \

--clusterrole=cluster -admin \

--user=system:serviceaccount:default:default

To connect from a Windows computer, it is possible to install kubectl to use in Windows
Command Line. Do this by following the official guide6 and setup the config file /Users/<your

user>/.kube/config. The result can be seen in figure B.4 for our cluster.

Figure B.4: Windows Command Line: kubectl get node and kubectl get node -o wide.

6https://kubernetes.io/docs/tasks/tools/install-kubectl

https://kubernetes.io/docs/tasks/tools/install-kubectl

114 APPENDIX B. CONFIGURING KUBERNETES ON A MULTI-NODE SETUP

Appendix C

Pod API interface

All pods communicate via REST1 API interfaces, that define a set of actions and resources, that
can be enabled or requested. We use Ethernet2 as the network technology, TCP/IP3 as the
protocol stack, HTTP4 as the application protocol for all messages sent and received between
pods and JSON5 as the data interchange format. The API interfaces are defined below per pod
type (preprocessor, worker and postprocessor). All HTTP codes are HTTP response codes6.

Action API Description Arguments Returns

POST /load data/ Receives a global
dictionary, global
training data and
specification and
distributes the data
to all worker pods
available.

Takes D, Y and a
specification as body
parameters.

Returns 200 if work
was loaded correctly,
otherwise returns
500.

POST /start work/ Takes and empty
body and instructs
all worker pods to
start running cloud
K-SVD at once.

None. Returns 200 if all
pods were started
correctly, otherwise
returns 500.

Table C.1: API interfaces for the preprocessor pod template.

1Representational state transfer: https://en.wikipedia.org/wiki/Representational state transfer
2Ethernet: https://en.wikipedia.org/wiki/Ethernet
3TCP/IP: https://en.wikipedia.org/wiki/Internet protocol suite
4HTTP: https://en.wikipedia.org/wiki/Hypertext Transfer Protocol
5JSON: https://en.wikipedia.org/wiki/JSON
6HTTP response codes: https://en.wikipedia.org/wiki/List of HTTP status codes

115

116 APPENDIX C. POD API INTERFACE

Action API Description Arguments Returns

POST /load data/ Receives a local
dictionary, local
training data and
a specification
from the prepro-
cessor and stores
everything in Redis.

Takes Di, Yi and
a specification as
body parameters.

Returns 200 if work
was loaded correctly,
otherwise returns
500.

POST /start work/ Spawns a task that
runs cloud K-SVD
with that latest
loaded data and
sets the local pod
status to running.

None. Returns 200 if
work was started
correctly, otherwise
returns 500.

GET /status/ Returns the current
status of the worker
pod.

None. Returns 200 and a
JSON response with
the status.

GET /qresidual/ Returns the local qi
for atom k (n) used
in cloud K-SVD.

Takes a string k as
request parameters.

Returns 200 and a
JSON response with
the residual if it was
found, otherwise re-
turns 404.

GET /training data/ Returns the cur-
rently loaded
training data.

None. Returns 200 and a
JSON response with
the training data if
it was found, other-
wise returns 404.

Table C.2: API interfaces for the worker pod template.

Action API Description Arguments Returns

POST /save results/ Receives a final Di,
Yi, a list of all Di and
a list of all Yi per iter-
ation tp and a dictio-
nary with statistics
for the current run as
results and saves ev-
erything in Redis.

Takes Di, Yi, a list of
Di, a list of Yi and
a dictionary with re-
sults as body param-
eters.

Returns 200 if re-
sults were saved cor-
rectly, otherwise re-
turns 500.

GET /get result/ Returns the final Di,
the final Yi, a list of
all Di and a list of
all Yi per iteration
tp and a dictionary
with statistics as the
results.

None. Returns 200 and a
JSON response with
the results, otherwise
returns 404.

Table C.3: API interfaces for the postprocessor pod template.

Appendix D

Dockerfiles for Docker images

Listing D.1 shows the Dockerfile for the preprocessor image.

Listing D.1: Dockerfile for preprocessor image.

Using official python runtime base image

FROM python :3.7.4

Set the app directory

WORKDIR /usr/src/app

Update packages and install libraries

RUN apt -get update && apt -get install -y python3 -pip \

&& apt -get install -y python3 -numpy && apt -get install -y libatlas

-base -dev

Upgrade pip

RUN pip install --upgrade pip

Install numpy using precompiled wheels

RUN pip install --index -url=https ://www.piwheels.org/simple/ \

NUMPY CCHARDET PYCARES CFFI MULTIDICT YARL HIREDIS PYYAML

Install other requirements

RUN pip install AIOHTTP AIODNS AIOREDIS NEST_ASYNCIO KUBERNETES

Copy all to current dir

COPY . .

Make port 8080 available for webapi

EXPOSE 8081

Define the command to be run when launching the container

CMD ["python","-u","./app.py"]

117

118 APPENDIX D. DOCKERFILES FOR DOCKER IMAGES

Listing D.2 shows the Dockerfile for the worker image.

Listing D.2: Dockerfile for worker image.

Using official python runtime base image

FROM python :3.7.4

Set the app directory

WORKDIR /usr/src/app

Update packages and install libraries

RUN apt -get update && apt -get install -y python3 -pip \

&& apt -get install -y python3 -numpy && apt -get install -y libatlas

-base -dev

Upgrade pip

RUN pip install --upgrade pip

Install using precompiled wheels

RUN pip install --index -url=https ://www.piwheels.org/simple/ \

SCIPY CYTHON CCHARDET PYCARES CFFI MULTIDICT YARL HIREDIS PYYAML

Install other requirements

RUN pip install AIOHTTP AIODNS AIOREDIS NEST_ASYNCIO KUBERNETES

Copy all to current dir

COPY . .

Run Cython

RUN python setup.py build_ext --inplace

Make port 8080 available for webapi

EXPOSE 8080

Define the command to be run when launching the container

CMD ["python","-u","./app.py"]

119

Listing D.3 shows the Dockerfile for the postprocessor image.

Listing D.3: Dockerfile for postprocessor image.

Using official python runtime base image

FROM python :3.7.4

Set the app directory

WORKDIR /usr/src/app

Update packages and install libraries

RUN apt -get update && apt -get install -y python3 -pip \

&& apt -get install -y python3 -numpy && apt -get install -y libatlas

-base -dev

Upgrade pip

RUN pip install --upgrade pip

Install numpy using precompiled wheels

RUN pip install --index -url=https ://www.piwheels.org/simple/ \

NUMPY CCHARDET PYCARES CFFI MULTIDICT YARL HIREDIS PYYAML

Install other requirements

RUN pip install AIOHTTP AIODNS AIOREDIS NEST_ASYNCIO KUBERNETES

Copy all to current dir

COPY . .

Make port 8082 available for webapi

EXPOSE 8082

Define the command to be run when launching the container

CMD ["python","-u","./app.py"]

120 APPENDIX D. DOCKERFILES FOR DOCKER IMAGES

Appendix E

YAML deployment files for pods

Listing E.1 shows the deployment template file for the preprocessor.

Listing E.1: YAML deployment template for the preprocessor

ap iVers ion : a p p s / v1
kind : D e p l o y m e n t
metadata :
name: p r e p r o c a p i −app
spec :
s e l e c t o r :
matchLabels :
app: p r e p r o c a p i −app
s t r a t egy :
type : R o l l i n g U p d a t e
r e p l i c a s : 1
template :
metadata :
name: p r e p r o c a p i −app
l a b e l s :
name: p r e p r o c a p i −app
app: p r e p r o c a p i −app
spec :
c on t a i n e r s :
− name: p r e p r o c a p i − c o n t a i n e r
image : t h e c m l / s p a r s e −p r e p r o c a p i : 1 . 0
imagePul lPo l i cy : A l ways
env:
− name: APP ENV
value : d e v e l o p m e n t
− name: PORT
value : " 8081 "

− name: PREPROC WEB PORT
value : " 8081 "

− name: WORKER WEB PORT
value : " 8080 "

− name: KUBERNETES ENABLED
value : " 1 "

− name: WORKER API LABEL

121

122 APPENDIX E. YAML DEPLOYMENT FILES FOR PODS

value : " app = workerapi - app "

− name: DEBUG MODE
value : " 1 "

port s :
− conta inerPort : 8 0 8 1
name: h t t p
pro toco l : TCP

Listing E.2 shows the deployment template file for the worker.

Listing E.2: YAML deployment template for the worker

ap iVers ion : a p p s / v1
kind : D e p l o y m e n t
metadata :
name: w o r k e r a p i −app
spec :
s e l e c t o r :
matchLabels :
app: w o r k e r a p i −app
s t r a t egy :
type : R o l l i n g U p d a t e
r e p l i c a s : 4
template :
metadata :
name: w o r k e r a p i −app
l a b e l s :
name: w o r k e r a p i −app
app: w o r k e r a p i −app
spec :
c on t a i n e r s :
− name: r e d i s − c o n t a i n e r
image : r e d i s
env:
− name: APP ENV
value : d e v e l o p m e n t
− name: PORT
value : " 6379 "

port s :
− conta inerPort : 6 3 7 9
name: h t t p
pro toco l : TCP
− name: w o r k e r a p i − c o n t a i n e r
image : t h e c m l / s p a r s e −w o r k e r a p i : 1 . 0
imagePul lPo l i cy : A lway s
env:
− name: APP ENV
value : d e v e l o p m e n t
− name: PORT
value : " 8080 "

123

− name: POD IP
valueFrom:
f i e l d R e f :
f i e l d P a t h : s t a t u s . pod IP
− name: WEB PORT
value : " 8080 "

− name: KUBERNETES ENABLED
value : " 1 "

− name: TIME OUT
value : " 1 "

− name: WORKER API LABEL
value : " app = workerapi - app "

− name: DEBUG MODE
value : " 0 "

− name: POSTPROC WEB PORT
value : " 8082 "

− name: POSTPROC API LABEL
value : " app = postprocapi - app "

port s :
− conta inerPort : 8 0 8 0
name: h t t p
pro toco l : TCP
r e s our ce s :
r eque s t s :
memory: " 506314 Ki "

cpu: " 500 m "

l i m i t s :
memory: " 1012629 Ki "

cpu: " 1000 m "

Listing E.3 shows the deployment template file for the postprocessor.

Listing E.3: YAML deployment template for the postprocessor

ap iVers ion : a p p s / v1
kind : D e p l o y m e n t
metadata :
name: p o s t p r o c a p i −app
spec :
s e l e c t o r :
matchLabels :
app: p o s t p r o c a p i −app
s t r a t egy :
type : R o l l i n g U p d a t e
r e p l i c a s : 1
template :
metadata :
name: p o s t p r o c a p i −app
l a b e l s :
name: p o s t p r o c a p i −app

124 APPENDIX E. YAML DEPLOYMENT FILES FOR PODS

app: p o s t p r o c a p i −app
spec :
c on t a i n e r s :
− name: r e d i s − c o n t a i n e r
image : r e d i s
env:
− name: APP ENV
value : d e v e l o p m e n t
− name: PORT
value : " 6379 "

port s :
− conta inerPort : 6 3 7 9
name: h t t p
pro toco l : TCP
− name: p o s t p r o c a p i − c o n t a i n e r
image : t h e c m l / s p a r s e −p o s t p r o c a p i : 1 . 0
imagePul lPo l i cy : A lway s
env:
− name: APP ENV
value : d e v e l o p m e n t
− name: PORT
value : " 8082 "

− name: POD IP
valueFrom:
f i e l d R e f :
f i e l d P a t h : s t a t u s . pod IP
− name: WEB PORT
value : " 8082 "

− name: DEBUG MODE
value : " 1 "

port s :
− conta inerPort : 8 0 8 2
name: h t t p
pro toco l : TCP

Appendix F

Algorithms

Algorithm 2: The K-SVD [46] [Chapter 12.2.3]

Input: Matrix YYY
Output: Dictionary DDD.

1 Initialize k = 0 and initialize dictionary DDD(0) ∈ RM×N , either by using random entries, or

using N random chosen examples. // Initialization

2 Normalize the columns of DDD(0). // Normalization

3 while stopping criteria not satisfied do
4 Increment k by 1.
5 Use a pursuit algorithm to approximate the solution of // Sparse Approximation

x̂̂x̂xi = argmin
xxx
‖ yyyi −DDD(k−1)xxx ‖22 subject to ‖ xxx ‖0≤ k0

obtaining sparse representations x̂̂x̂xi for 1 ≤ i ≤ Q These form the matrix XXX(k).

6 for j0 ← 1 to m do // K-SVD Dictionary Update

7 Define the group of examples that use the atom dj

Ωj0 = {i | 1 ≤ i ≤ Q,XXX(k)[j0, i] 6= 0}

8 Compute the residual matrix

EEEj0 = YYY −
∑
j 6=j0

dddjxxx
T
j

where xxxj are the j’th rows in the matrix XXX(k).

9 Restrict EEEj0 by choosing only the columns corrosponding to Ωj0 , and obtain EEERj0 .

10 Apply SVD decomposition EEERj0 = UUU∆VVV T . Update the dictionary atom dddj0 = uuu1,

and the representations by xxxRj0 = ∆[1, 1] · vvv.

11 end
12 If change in ‖ YYY −DDD(k)XXX(k) ‖2F is small enough, stop. // Stopping Criteria

13 end
Result: The desired result dictionary DDD = DDD(k)

125

126 APPENDIX F. ALGORITHMS

Algorithm 3: The Method of Optimal Directions (MOD) [46][Chapter 12.2.2]

Input: Matrix YYY
Output: Dictionary DDD.

1 Initialize k = 0 and initialize dictionary DDD(0) ∈ RM×N , either by using random entries, or

using N random chosen examples. // Initialization

2 Normalize the columns of DDD(0). // Normalization

3 while stopping criteria not satisfied do
4 Increment k by 1.
5 Use a pursuit algorithm to approximate the solution of // Sparse Approximation

x̂̂x̂xi = argmin
xxx
‖ yyyi −DDD(k−1)xxx ‖22

obtaining sparse representations x̂̂x̂xi for 1 ≤ i ≤ Q These form the matrix XXX(k).

6 Update the dictionary by the formula // MOD Dictionary Update

DDD(k) = argmin
DDD
‖ YYY −DDDXXX(k) ‖2F= YYYXXXT

(k)(XXX(k)XXX
T
k)−1 = YYYXXX†(k)

7 If change in ‖ YYY −DDD(k)XXX(k) ‖2F is small enough, stop. // Stopping Criteria

8 end
Result: The desired result dictionary DDD = DDD(k)

Algorithm 4: The Orthogonal Matching Pursuit (OMP)[39][Chapter 5.3.3]

Input: Dictionary/Measurement matrix DDD and signal measurement yyy
Output: Sparse representation x̂̂x̂x.

1 Initialize θ̂̂θ̂θ0 = 0, rrr = yyy, Ω = ∅, i = 0 // Initialization

2 while stopping criteria not satisfied do
3 i← i+ 1
4 bbb←DDDTrrr // Form residual signal estimate

5 ΩΩΩ← ΩΩΩ ∪ supp(T (bbb, 1)) // Add index of residual’s largest magnitude

6 x̂̂x̂xi|Ω ←DDD†Ωxxx,xxxi|CΩ ← 0 // Form signal estimate

7 rrr ← yyy −DDDx̂̂x̂xi // Update measurement residual

8 If residual rrr is small enough or x̂̂x̂x is K-sparse, stop. // Stopping criteria

9 end
Result: The desired approximate x̂̂x̂x← x̂̂x̂xi

	Preface
	Abstract
	Resume
	Introduction
	Practical cases and SOTA
	Where we can contribute
	Problem definition
	Outline

	Historical background and studies
	A look at modern signal processing
	Applications of the compressed sensing framework
	The need for distributed systems
	Dictionary learning in distributed systems

	Signal processing theory
	Signal models and Norms
	Signal sampling in compressed sensing
	Signal recovery in compressed sensing
	The transition to sparse approximation
	Sparse approximation
	Dictionary learning in sparse approximation
	Consensus and power iterations
	The cloud K-SVD and distributed learning

	Cloud computing theory
	Concepts of cloud computing
	Microservices in the cloud
	Building containers with Docker
	Controlling containers with Kubernetes

	Design and implementation
	Overall design and solution
	Cluster considerations and operating-systems
	Implementation details

	Experiments and results
	Introduction to experiments
	Experiments using synthetic data
	Experiments using image patches
	Experiments using medical images

	Discussion and conclusion
	Lessons learned
	Conclusion
	Future work

	Nomenclature
	Bibliography
	Image and signal quality assessment metrics
	Configuring Kubernetes on a multi-node setup
	Pod API interface
	Dockerfiles for Docker images
	YAML deployment files for pods
	Algorithms

