What can (potentially be decoded in or near the ear

Workshop in Cognitive Hearing (CogHear) Organized by Mounya Elhilali, Shihab Shamma and Malcolm Slaney Presentation by Preben Kidmose

Vision: Brain Decoding in Real-Life

Conventional EEG system

Ear-EEG based system

Ear-EEG based hyperscanning

High-performance research and clinical EEG system Discreet, unobtrusive and user-friendly devices for everyday life Intra- and inter-subject decoding in large groups of subjects in real-life settings

Preben Kidmose Electrical and Computer Engineering, Aarhus University

- Introduction to ear-EEG
- The keyhole hypothesis
- Ear-EEG forward model
- What can (potentially) be decoded in or near the ear

References:

- S. Kappel et al., "Ear-EEG Forward Models: Improved Head-Models for Ear-EEG", Frontiers in Neuroscience | Brain Imaging Methods (2019).
- K. Mikkelsen et al., "On the keyhole hypothesis: High mutual information between Ear and Scalp EEG", Frontiers in Human Neuroscience (2017).
- C. Christensen et al., "Auditory Steady-State Responses across Chirp Repetition Rates for Ear-EEG and Scalp EEG", EMBC (2018).
- C. Christensen et al., "Towards EEG-assisted Hearing Aids: Objective Threshold Estimation Based on Ear-EEG in Subjects with Sensorineural Hearing Loss", Trends in Hearing, (2018).
- C. Christensenet al., "Ear-EEG based objective hearing threshold estimation evaluated on normal hearing subjects", IEEE Tran. BME (2018).
- K. Mikkelsen et al., "Automatic sleep staging using ear-EEG", BioMedical Engineering Online, September (2017).
- K. Mikkelsen et al., "Accurate whole-night sleep monitoring with dry-contact ear-EEG", Scientific Report, Nature, (2019).
- Y. Tabar et al., "Ear-EEG for sleep assessment: a comparison with actigraphy and PSG", Sleep and Breathing, Springer (2020).
- F. Farooq et al.. "Random Forest Classification for P300 Based Brain Computer Interface Applications". EUSIPCO (2013).
- S. Kappel et al., "High-Density Ear-EEG", EMBC (2017).
- S. Kappel et al, "Real-Life Dry-Contact Ear-EEG", EMBC (2018).

Feasibility

Features of a real-life EEG device:

- Discreet or at least not stigmatizing
- > Unobtrusive benefits outweigh disadvantages
- Comfortable to wear
- > Safe
- > Scalable (to reach broad populations)
 - > Affordable
 - > Easy to use
 - > (Preferably) non-invasive

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Ear-EEG - embodiments and approaches

M.G. Bleichner and S. Debener. "Concealed, unobtrusive ear-centered EEG acquisition: cEEGrids for transparent EEG", Frontiers in human neuroscience (2017).

In-the-ear

S.L. Kappel P. Kidmose. "High-density ear-EEG", IEEE Engineering in Medicine and Biology Society (2017).

41_5800_1010-3-8 / LOT 11-201

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Ear-EEG configurations

Preben Kidmose Electrical and Computer Engineering, Aarhus University

The keyhole hypothesis

ear-to-scalp

Prediction model

K. B. Mikkelsen, P. Kidmose, and L. K. Hansen. "On the keyhole hypothesis: high mutual information between ear and scalp EEG." Frontiers in Human Neuroscience (2017).

Preben Kidmose Electrical and Computer Engineering, Aarhus University

The keyhole hypothesis

The prediction model:

- generalizes over paradigms
- is stable over time and mental states
- can reconstruct ERPs
- can predict scalp topographies

MMN - scalp based predictions of ear-EEG

K. B. Mikkelsen, P. Kidmose, and L. K. Hansen. "On the keyhole hypothesis: high mutual information between ear and scalp EEG." Frontiers in Human Neuroscience (2017).

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Experimental setup

S. L. Kappel et al. "Ear-EEG Forward Models: Improved Head-Models for Ear-EEG", Frontiers in Neuroscience, 2019.

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Forward model

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Validation of forward model

IC5, RV=7.1, PVAF=1.8

Dipole location

AARHUS

UNIVERSITY

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Sensitivity maps

FIGURE 11 | The sensitivity distribution for different electrode configurations, based on an ear-EEG forward model for Subject C. (A) Between-ears electrode configuration, (B) Ear electrode to an infinite reference, (C) Within-ear electrode configuration.

S. L. Kappel et al. "Ear-EEG Forward Models: Improved Head-Models for Ear-EEG", Frontiers in Neuroscience, 2019.

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Sensitivity maps

AARHUS

UNIVERSITY

S. L. Kappel et al. "Ear-EEG Forward Models: Improved Head-Models for Ear-EEG", Frontiers in Neuroscience, 2019.

What can (potentially) be decoded from ear-EEG?

Preben Kidmose Electrical and Computer Engineering, Aarhus University

ASSR vs Repetition Rate

C. B. Christensen et al. "Auditory Steady-State Responses across Chirp Repetition Rates for Ear-EEG and Scalp EEG", EMBC 2018.

Preben Kidmose Electrical and Computer Engineering, Aarhus University

ASSR Source Model

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Hearing Threshold Assessment

15 subjects with normal hearing (\leq 20 dB HL) and 19 subjects with sensorineural hearing loss (30 to 65 dB HL).

C. B. Christensen et al., "Ear-EEG based objective hearing threshold estimation evaluated on normal hearing subjects", IEEE Transactions on Biomedical Engineering, 2018. C. B. Christensen et al. "Toward EEG-Assisted Hearing Aids: Objective Threshold Estimation Based on Ear-EEG in Subjects with Sensorineural Hearing Loss", Trends in Hearing, 2018.

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Ear-EEG based Automatic Sleep Staging

20 subjects, 80 full-night recordings.

K. Mikkelsen et al., "Automatic Sleep Staging using Ear-EEG". Biomedical Engineering Online (2017). K. Mikkelsen et al., "Accurate whole-night sleep monitoring with dry-contact ear-EEG." Scientific reports (2019).

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Beat perception

0.8 Hz

1.2 Hz

Heidi Bliddal et al., pilot data, unpublished.

2.4 Hz

1.6 Hz

Workshop in Cognitive Hearing 25th February 2021

Preben Kidmose Electrical and Computer Engineering, Aarhus University

Example: P300 Brain-Computer Interface

Fig. 1. The experimental setup. Top: subject equipped with EEG cap and EarEEG attending the visual paradigm on the screen. Lower left: earpiece placed in the ear; the visible cables connects the electrodes on the earpiece to the amplifier. Lower right: earpiece with electrodes; labels superimposed on the image indicates the electrode names.

F. Farooq and P. Kidmose, "EarEEG based visual P300 Brain-Computer Interface." IEEE Conference on Neural Engineering (2015).

ELK (SNR = 19 [dB]

100

200

300

Time [ms]

400

500

600

700

0

Preben Kidmose Electrical and Computer Engineering, Aarhus University

-0.4

-200

-100

Workshop in Cognitive Hearing 25th February 2021

800

Lab and real-life recording

AARHUS

UNIVERSITY

S. L. Kappel and P. Kidmose. "Real-life dry-contact ear-EEG", *EMBC (*2018).

.... thank you