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Abstract— Ear-EEG offers significant advantages for longi-
tudinal sleep studies since it is less intrusive and more user-
friendly compared to traditional scalp EEG. The feasibility of
longitudinal sleep studies further relies on automated sleep
analysis algorithms. This study proposes a systematic and
robust procedure for sleep analysis with a key focus on
identifying recordings with poor data quality. The method
is based on the USleep sleep scoring model and leverages
the model’s confidence score as a measure of signal quality.
This strategy is based on the observation that there is a
high correlation between the sleep model’s confidence score
and Cohen’s kappa between manual and model annotations.
Notably, the procedure does not rely on manually labeled
data or other manual steps. The procedure was evaluated
on a novel dataset comprising 576 sleep recordings from 24
chronic pain patients. The procedure distinguished recordings
with kappa values above and below 0.6 with an accuracy of
91.9 % . Importantly, the exclusion criteria did not systematically
eliminate recordings with poor sleep quality metrics, such as low
sleep efficiency or frequent sleep stage transitions. Furthermore,
the study highlights the benefits of multiple night sleep studies
by visualizing the inter-night variability in each subject. In
conclusion, the proposed procedure effectively excluded poor-
quality recordings, enabling robust analysis of sleep patterns
in patients.

I. INTRODUCTION

Human sleep exhibits significant night-to-night variability,
influenced by factors such as stress [1] and environmental
conditions [2]. This variability highlights the limitations of
single-night sleep studies, as the selected night could be an
outlier and fail to represent an individual’s typical sleep pat-
terns. In contrast, multi-night sleep studies capture night-to-
night fluctuations, providing a more accurate characterization
of sleep architecture and improving the diagnostic reliability
of sleep-related conditions.

The gold-standard sleep assessment method, Polysomnog-
raphy (PSG), is impractical for long-term use due to several
limitations. It requires a complex setup, including precise
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scalp-EEG electrode placement, which is time-consuming
and cumbersome. Additionally, scalp-EEG devices may
cause discomfort and disrupt sleep. Alternatively, ear-EEG
provides a discreet, less intrusive, and user-friendly solution,
making it more suitable for long-term, at-home sleep moni-
toring [3].

Traditionally, sleep stages are scored for every 30 seconds
by sleep experts, which is tedious and laborious. Automatic
sleep scoring algorithms not only resolve this issue but also
allow us to annotate sleep stages on other devices, including
ear-EEG. The standard AASM rules for sleep staging were
defined by characteristics of EEG signals recorded on the
scalp. Previous studies have trained sleep stage classifiers
using manual labels on scalp-EEG and showed the possibility
of predicting sleep stages on ear-EEG signals with high
agreement levels, mainly in young, healthy subjects [4-8].

The challenge of using devices for at-home sleep monitor-
ing is the greater risk of poor data quality [9]. In the research
setup, we can perform concurrent scalp-EEG and ear-EEG
recordings. Then, we can calculate the kappa values between
the model’s prediction and manual scoring to validate the
reliability of the recording devices and automatic sleep stage
classifier. However, in actuality, especially for long-term
monitoring, either scalp-EEG or manual scoring will not be
available. Therefore, we need another way to assess if a given
recording is trustworthy.

Previous research has shown a high correlation between
the kappa value and confidence level of the sleep staging
model [6]. However, both poor signal quality and disturbed
sleep (poor sleep quality) can result in low kappa and low
confidence scores. The clinical utility of the methods requires
that we should not trust sleep scores from nights with poor
signal quality, but we should keep nights with poor sleep
quality because these are clinically important.

This study primarily aimed to validate the performance of
automatic sleep staging using ear-EEG by comparing it to
gold-standard, manually scored scalp-EEG in patients with
chronic pain. Secondarily, we aimed to develop an automatic
data processing pipeline to identify recordings with poor
data quality without manual labels or scalp-EEG recordings.
The main objective of the pipeline is to identify recordings
with poor data quality with minimal bias towards poor sleep
quality. Lastly, we illustrate the advantage of long-term sleep
monitoring by exploring the inter-night variability.
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II. DATASETS
A. Data Information

The dataset from the Long-term Monitoring of Sleep
with Ear-EEG in Patients with Chronic Pain study
(NCTO06368531) includes long-term sleep monitoring data
from 24 chronic pain patients aged 18-58 years, including
20 females. Each subject was asked to wear the ear-EEG so-
lIution NeuroBuds from T&W Engineering, Denmark, while
sleeping at home preferably 24 nights during a period of
5 weeks. The electrodes include €0, el (left ear) and e2,
e3 (right ear). The dataset comprises 576 nights (11 to 33
nights per subject). Among these nights, each subject also
participated in one PSG sleep assessment (referred to as the
”PSG night”) conducted at the Respiration Center at Odense
University Hospital. During the PSG night, both ear-EEG
signals and standard physiological signals—such as scalp-
EEG (e.g., C3, C4, F3, F4, O1, 02, M1, M2), EOG (El, E2),
and others—were recorded simultaneously. Sleep stages were
annotated in 30-second epochs by a trained sleep technician
based solely on the standard PSG data.

B. Data Preprocessing and Epochs Rejection Criteria

Both ear-EEG and scalp-EEG recordings were prepro-
cessed as follows:

o All samples with NaN values were replaced with zero
and marked as nan for further use.

o The intervals where the signal maintained the same
value for at least 1 second were identified as flatline.

o A zero-phase high-pass filter at 0.1 Hz and a notch filter
at 50 Hz were applied to the signals.

o The signals were resampled to 128 Hz to ensure com-
patibility with the USleep architecture.

e Samples exceeding £100uV  were
over_amplitude_th.

o Each recording was standardized per channel to have
zero mean and unit variance.

o Samples exceeding &+ 20 were marked as over_igr.

o The final artifact markers were marked at any sample
identified as nan, flatline, over_amplitude_th, or
over_iqr.

o Cross-referencing was calculated for scalp-EEG record-
ings during this step. For ear-EEG recordings, cross-
referencing had already been performed in the original
dataset.

marked as

Finally, ”unscorable” epochs were identified separately for
scalp-EEG and ear-EEG recordings. Epochs where more than
50% of the samples were marked as artifact across all
channels were considered unscorable. Additionally, epochs
with flatline periods exceeding 50% were also marked as
unscorable for manual labels.

ITII. METHODS

A. Automatic Sleep Stage Classifier

USleep is a U-Net-based sleep stage classifier that has
demonstrated efficiency and generalizability across multiple
datasets [10]. In our previous study [11], the USleep model

was pre-trained using scalp-EEG and EOG signals from 13
large datasets: ABC, CCSHS, CFS, CHAT, DCSM, HPAP,
MESA, MROS, PHYS, SEDF SC, SEDF ST, SHHS, and
SOF [12-22]. This pre-trained model, denoted as M,
was then used to predict sleep stages for each 30-second
epoch from the scalp-EEG recordings in our dataset.

For ear-EEG recordings, we pre-trained another USleep
model with single channel input (EEG only, denoted as
Mcap-eeg) since the EOG was not recorded during the
non-PSG nights. Given that mastoid electrodes (M1-M2) are
located closer to the ears, they provide signals more similar
to ear-EEG than other scalp-EEG electrodes. Furthermore,
previous research has demonstrated the effectiveness of using
mastoid channels for automatic sleep staging [7]. Therefore,
we fine-tuned the Mp-eeg on M1-M2 on the same pre-
training datasets when available. This model, denoted as
M, wWas then used to predict the sleep stages for the ear-
EEG recordings from our dataset.

B. Model Prediction

For Mcaip, one EEG channel and one EOG channel were
used. We fed combinations of bi-polar EEG channels (C3-
M2, C4-M1, F3-M2, F4-M1, O1-M2, and O2-M1) along
with EOG channels (E1-M2 and E2-M1) into the model.
Similarly, for M.,, bi-polar ear-EEG channels (e0-e2, el-
e3, e0-e3, and el-e2) were used.

The final prediction was based on the ensemble of the
individual models. More specifically, for Mc,p, predictions
from all scalp-EEG and EOG channel combinations were
summed, followed by a softmax operation, and the class with
the highest probability was chosen as the final prediction. For
Mear, the same process was applied using predictions from
all ear-EEG channels.

C. Confidence Score as a Data Quality Measure

In longitudinal sleep recordings using ear-EEG, there is
a certain likelihood of encountering recordings with poor
signal quality. Such recordings can lead to inaccurate sleep
scoring and may compromise the overall sleep assessment.
Therefore, it is important to be able to identify poor-quality
recordings to maintain the reliability of the sleep assessment.
This assessment of the signal quality should be based on the
ear-EEG signal itself.

For each 30-second epoch, the sleep scoring model gen-
erates five values representing the probability for each sleep
stage. The more certain the model is about a sleep stage, the
higher the probability of that stage. Therefore, the maximum
probability can be interpreted as a measure of the model’s
confidence. Previous studies [6] have introduced the concept
of using the confidence score as a measure of signal quality
and found a high correspondence between kappa and median
confidence score. This has been further investigated for
predicting the sleep stage classification performance in [23].
This concept is further explored in this study.

A potential pitfall is that various forms of disturbed sleep
may also lead to a decrease in confidence. Therefore, the
challenge is to find a method to identify recordings with low
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signal quality while preserving recordings with disturbed or
disrupted sleep.

The model confidence score is defined as the maximum
probability on each epoch. The median of the scores across
the entire night was then calculated to serve as the represen-
tative score for each night. For each 30-second epoch ¢, the
confidence score C; is defined as:

C; = max(Pi1, P2, Pi3, Py, P;s) (D

where P;; represents the probability of the j-th sleep stage
for the i-th epoch.

The representative confidence score for the entire night
(Chight) is calculated as:

Chight = median(C1, Cy, ..., Cy) 2)

where n is the total number of epochs in the night.

However, the model is likely to be less confident during
transition periods, as these may involve combinations of
multiple sleep stages. As a result, poor sleep quality and
increased sleep fragmentation can lead to a lower median
confidence score for the night. To mitigate this bias, we
selected only the epochs that were not adjacent to different
stages. This approach allows us to obtain the confidence
score only from the periods where the model should be
confident, provided the signal quality is adequate.

D. A Systematic Recording Rejection Approach

A threshold for the confidence score is necessary to dis-
tinguish between trustworthy and untrustworthy recordings,
ensuring that only recordings with a confidence score above
this threshold are included in further analysis. However,
the optimal threshold is not universal and depends on the
specific goals of the target application. If the high reliability
of individual recordings is crucial for clinical assessment,
a higher threshold should be set, though this may result in
a higher number of rejected recordings. Conversely, if the
focus is on having a larger number of nights for clinical
analysis, a lower threshold may be more appropriate.

We propose a systematic approach to determine the op-
timal threshold using a performance metric (PM). As an
example, we define the performance metric as:

Nzrxfluded (t) , 3)
total

in which ¢ represents the threshold, ranging from O to 1,
and where recordings with a confidence score lower than
the threshold will be rejected; xpos(t) denotes the lower
quartile of kappa of the included recordings; and N“Ld%je;i(f)
is the proportion of retained recordings. This PM balances
the trade-off between the minimum acceptable kappa values
and the proportion of recordings retained. The 25th percentile
of kappa values was used as a measure of acceptable quality
since it is less influenced by the excluded recordings.

The optimal threshold was determined as the threshold
value that maximized the performance metric. Importantly,
this threshold was determined using the PSG nights and
subsequently applied to the entire dataset.

PM(t) = HP25(t) .
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Fig. 1. Upper: Distribution of Cohen’s kappa values comparing manual
and automatic scoring from 24 PSG nights. Lower: Relationship between
confidence score and Cohen’s kappa for ear-EEG recordings, demonstrating
a strong positive correlation.

E. Noise Simulation for Confidence Score Evaluation

We artificially degraded data quality by adding pink noise
at varying levels to the original signals. This experiment was
designed to test the hypothesis that if the confidence score
accurately reflects data quality, it should decrease as the noise
level increases.

For each recording from the PSG nights, we first calcu-
lated the standard deviation (o) of the signal amplitude for
each channel. White noise was then generated with a mean
of 0 and a standard deviation of:

gs = S - Oorig (4)

where S values were set to 0.05, 0.1, 0.2, 0.5, and 1.

The pink noise was generated from white noise as follows:

1. Compute the Fast Fourier Transform (FFT) of the white
noise:

X (f) = F(white_noise) )

2. Apply a 1/f filter:

Xﬁltered(f) = X(f) . H(f) (6)
)0, f<01
A= {} 0.1<f<128 @
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3. Obtain the time-domain pink noise by applying the
inverse FFT:

pink_noise = F~ (Xierea(f)) ®)

Finally, the pink noise was scaled to have zero mean and
a standard deviation of og, then added to the original signal.

Since noise was added separately to scalp-EEG and ear-
EEG signals, and the  values from each were not intended
for direct comparison in this experiment, we included all
epochs scorable by both manual annotation and M, for
the scalp-EEG results, and by both manual annotation and
M, for the ear-EEG results.

IV. RESULTS
A. Sleep Stage Classification Performance

Figure 1 presents the Cohen’s kappa (k) values between
sleep stages scored by the sleep technician and those pre-
dicted by the USleep model on our dataset. As described
in section II, epochs that were either unscorable by the
technicians or unpredictable by the models were excluded
for direct comparison between all methods.

The results demonstrate that most scalp-EEG recordings
achieved high x values, with a median of 0.80, reaffirming
the reliability of the pre-trained USleep model in predicting
sleep stages from scalp-EEG data in this unseen cohort. For
ear-EEG recordings, ~ values were slightly lower but still
reflected a substantial agreement at a median of 0.74. These
findings indicate that automatic sleep scoring is accurate
on ear-EEG data, even in non-healthy populations, and
underscore the high quality of the ear-EEG recordings.

B. Confidence Score

The lower panel of Figure 1 shows a strong positive
correlation between the model confidence score and k.
Specifically, in most cases, the confidence score decreased
as ~ values declined. This finding suggests that the confi-
dence score is a reliable proxy for assessing the quality of
recordings without the requirement of manual annotations,
providing a valuable metric for evaluating data usability.

C. Effects of Noise-Added Data

After adding various levels of pink noise to the data, the
model’s predictions were evaluated against manual scoring
from the original scalp-EEG data. The results are sum-
marized in Figure 2. The number of sessions included at
each noise level (indicated above each bar) varied because
epochs meeting the rejection criteria (subsection II-B) were
excluded, and in some recordings, no usable epochs remained
for analysis. In total, the synthetic dataset comprises 131
scalp-EEG and 136 ear-EEG recordings, with 24 actual
recordings for each method.

As illustrated in Figure 2 (upper), « values declined
consistently as noise levels increased. The trend was ob-
served across both scalp-EEG and ear-EEG recordings. This
confirms that higher noise levels degrade signal quality and
reduce the model’s ability to predict sleep stages accurately.
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Fig. 2. Distribution of Cohen’s kappa (top) and confidence score (bottom)
across different noise levels. The numbers above the bars indicate the
corresponding number of recordings. As the noise level increases, more
epochs are rejected due to poor data quality. Consequently, some recordings
have no remaining epochs, reducing the total number of recordings.

Similarly, Figure 2 (lower) illustrates a significant reduc-
tion in model confidence scores as noise levels increase. This
consistent decline in confidence scores with deteriorating
data quality highlights their utility as a robust metric for
assessing signal quality.

However, the confidence scores for scalp-EEG and ear-
EEG declined at different rates. While the confidence score
for ear-EEG consistently decreased with increasing noise
levels, scalp-EEG maintained a high confidence score until
S = 0.5. This suggests that the confidence score threshold
(subsection IV-D) should be considered separately for each
modality.

D. Optimal Threshold for Recording Rejection

The lower panel of Figure 3 illustrates the relationship
between confidence scores and « values for both actual and
synthetic (noise-added) data, reaffirming the strong correla-
tion between these two measures.

The results of our proposed procedure are displayed in
the upper panel. The top figure highlights a clear trade-off
between x values and the number of recordings included at
each threshold. Our systematic approach identified a confi-
dence score threshold of 0.75 as optimum, balancing this
trade-off effectively. At this threshold, 36.8% of recordings
were retained, achieving kpss of 0.52, which resulted in the
best performance metric (PM) of 0.19.

To evaluate the selected threshold, we applied it to all ear-
EEG recordings depicted in the lowest panel of Figure 3.
When we defined the recordings with « exceeding 0.6 as
reliable recordings (due to substantial agreement between
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Fig. 3.  Visualization of performance metrics across confidence score

thresholds (upper) and the scatter plot, illustrating the correlation between
values and confidence scores for both actual and simulated data (lower). The
gray dashed line in the upper panel indicates the threshold determined for
the optimal performance metric, which is also applied to the lower figure.

model and manual scoring [24]), our procedure effectively
identified them with an accuracy of 91.9%, a sensitivity of
91.5%, and a specificity of 92.1%. These results demonstrate
the robustness of our approach in rejecting low-quality data.

E. Sleep Metrics Comparison between Scorers

Sleep stage classification provides valuable insights into
patients’ sleep architecture, enabling the calculation of vari-
ous sleep metrics. In this study, we focused on key metrics,
including total sleep time (TST), sleep efficiency (SEFF),
the proportion of REM versus NREM epochs per night
(REM_NREMRATIO), and the number of sleep stage tran-
sitions from sleep onset to final awakening (STAGEC),
as representative examples. These metrics were computed
from manual scoring, Mgcap, and M, Among the 24
PSG nights, the threshold identified five as poor-quality
recordings, which were therefore excluded from this analysis.

A two-sided pairwise permutation test was performed to
assess statistical differences between each pair of methods.
As shown in Figure 4, the only significant difference between
the model prediction and manual annotation was observed
in the number of stage transitions. This suggests that both
models tend to predict more fragmented sleep compared to
manual scoring, which was also observed by the hypnogram

Sleep metrics from recordings selected by the threshold
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Fig. 4. Examples of sleep metrics, including Total Sleep Time

(TST), Sleep Efficiency (SEFF), the ratio of REM to NREM periods
(REM_NREMRATIO), and the number of stage transitions (STAGEC),
derived from recordings selected by the threshold (19 out of 24 recordings).
The solid line with an asterisk (*) indicates a significant difference between
each pair (p < 0.01), while the dotted line represents an insignificant
difference.

comparison. For TST, SEFF, and REM_NREMRATIO, sleep
stage predictions from all methods yielded similar values.

F. Effects of Exclusion Criteria on Sleep Metrics

The exclusion procedure consisted of two steps. First, we
calculated the percentage of rejected epochs per electrode,
as described in subsection II-B. Recordings with an average
of rejected epochs exceeding 20% were excluded. Second,
we excluded recordings with confidence scores below the
predefined threshold of 0.75. Together, these steps led to the
exclusion of 139 out of 576 ear-EEG recordings, representing
24.1% of the total dataset.

Figure 5 illustrates the effects of this procedure. The
first four panels compare the sleep metrics before and after
exclusion, while the lowest panel shows the percentage of
excluded sessions for each subject. Each dot represents the
sleep metric value from a recording. The results indicate
that the exclusion procedure had minimal impact on the
median sleep metrics for most subjects, as represented by
the horizontal line within each group. However, for subjects
with more than 50% of recordings removed, the changes
were more pronounced. These findings demonstrate the pro-
cedure’s effectiveness in retaining only reliable recordings
without significantly altering subject-level sleep metrics.

G. The Advantages of Multiple-night Sleep Study

Figure 5 reveals notable variations in sleep metrics across
multiple nights for each subject. This highlights the value
of multiple-night sleep studies in providing a more compre-
hensive understanding of the individual variations in sleep
patterns. The dark stars, representing sleep metrics derived
from the PSG nights, further demonstrate that a single PSG
night may not accurately capture a subject’s typical sleep
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Comparison of sleep metrics between before and after exclusion
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Fig. 5. The distribution of sleep metrics for each subject before and after
applying the exclusion procedure, along with the proportion of included and
excluded recordings per subject (the lowest panel). The sleep metrics from
the PSG nights were calculated from ear-EEG recordings.

characteristics. These findings align with previous research
[25] and emphasize the advantages of long-term sleep assess-
ment, where ear-EEG devices can offer significant benefits.

H. Sleep Quality

Our proposed procedure excludes poor-data-quality
recordings with minimal bias on sleep quality for the fol-
lowing reasons. First, the model confidence score is not
correlated with sleep quality, as indicated by the R? val-
ues of 0.01, 0.02, 0.03, and 0.13 between the confidence
score and TST, SEFF, REM_NREMRATIO, and STAGEC,
respectively. Second, we minimized the potential for this
bias by using only non-transitional epochs. This ensures
that higher transitional stages, which generally have lower
values, do not influence the overall confidence score. Finally,
Figure 5 shows that our procedure does not systematically
reject nights with poor sleep quality, such as low TST, low
SEFF, or high STAGEC.

V. DISCUSSION

Since ear-EEG devices offer significant advantages for
long-term sleep monitoring, particularly in at-home settings,
they provide an opportunity for more comprehensive as-
sessments of sleep behaviors. However, the trade-off is a
potential decrease in data quality, necessitating a systematic
approach to exclude unreliable recordings, especially in the

absence of manual scoring. We proposed a procedure based
on the model confidence score to address this issue and
demonstrated its efficacy in excluding poor-quality record-
ings with minimal bias from poor sleep quality.

We defined reliable recordings based on x values, where
a high agreement between the model and manual scoring
indicates data reliability. Low « values can result from either
poor data quality or model limitations on specific recordings.
Regardless of the underlying cause, those predictions are
inherently untrustworthy and should not be included in
further analyses.

The confidence score for each epoch was derived from
the maximum probability among the five classes. Therefore,
it may overlook essential information information reflected
in the prediction probability distribution. To address this,
we also explored alternative measures such as prediction
entropy and cosine similarity, which quantify the prediction’s
uncertainty and its similarity to manual-scoring consensus,
respectively. However, when calculating performance metrics
(PM) across thresholds and comparing between measures,
the confidence score consistently yielded the highest Area
Under the Curve. Moreover, after computing the median
confidence score from the entire night, all measures were
highly correlated. Overall, this indicated that the alternative
measures did not contribute significantly to the identification
of recordings with low data quality, and were thus left out
of the procedure.

Interestingly, ear-EEG recordings from 5 out of 24 PSG
nights were excluded by the confidence score despite typ-
ically being higher quality than home recordings. These
rejected recordings had x of 0.13, 0.18, 0.34, 0.62, and 0.68,
while the included sessions mostly got x > 0.64, except for
one recording with 0.58.

One of them clearly had poor data quality, with more
than 30% of epochs rejected. The other two recordings,
with 18-19% of epochs rejected, were excluded due to
falling below the confidence score threshold. This suggests
that, for sessions where the proportion of rejected epochs is
borderline, the confidence score provides additional support
in making exclusion decisions.

Another rejected PSG night had a moderate confidence
score (0.7) but an exceptionally low x (0.18). While our
procedure successfully excluded this recording, it was near
the rejection threshold. A similarly low x was also observed
between manual scoring and the model’s prediction on the
scalp-EEG data for this recording. To better understand
this case, we conducted a post hoc analysis. We consulted
the scorer, who noted that the recording was particularly
challenging to score due to numerous transitions, including a
prolonged period of transitioning between the Wake and N1
stages. Additionally, many N2 epochs resembled the REM
stage but without muscle atonia.

This recording also demonstrates a scenario where the
USleep model struggled to provide accurate predictions.
Such outliers are inevitable in any dataset. However, they
highlight the advantage of multiple-night sleep studies, where
insights from other reliable nights can help offset their
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impact. If these challenges arise from subject variability,
incorporating personalized techniques could be a promising
approach for future work.

The last rejected PSG night had a x of 0.68 but was
excluded due to a confidence score of 0.70. The confidence
score is relatively low because two out of four electrodes
exhibited poor signal quality. This is an example of a
recording that can achieve higher x when using one electrode
instead of the ensemble method. Therefore, optimizing elec-
trode weighting could be an interesting direction for future
research.

Our approach paves the way for further analysis in the next
step, where we can examine the longitudinal ear-EEG sleep
recordings and explore parameters related to chronic pain
patients. However, a limitation of this study is that we did
not apply the pipeline to any other datasets. Therefore, future
work should involve validating the pipeline on additional
datasets to assess its generalizability and robustness across
diverse populations.

VI. CONCLUSION

The proposed procedure for sleep analysis was evaluated
on a dataset comprising 576 sleep recordings from 24 chronic
pain patients. A single night of concurrent PSG and ear-EEG
was recorded from each patient, yielding a median Cohen’s
kappa of 0.74 between manual PSG scoring and model-based
ear-EEG scoring. On this part of the data, the procedure
distinguished recordings with kappa values above and below
0.6 with an accuracy of 91.9%. On the entire dataset, 139
out of 576 recordings (24.1%) were identified as having low
signal quality, resulting in 437 (75.9%) nights with reliable
hypnograms. Importantly, the procedure did not systemati-
cally reject recordings with sleep metrics indicating disturbed
sleep, suggesting that the procedure identifies recordings
with low data quality without discarding recordings with low
sleep quality.

REFERENCES

[1] E.-J. Kim and J. E. Dimsdale, “The effect of psychosocial
stress on sleep: A review of polysomnographic evidence,”
Behavioral sleep medicine, vol. 5, no. 4, pp. 256-278, 2007.

[2] J.-H. Byun et al., “The first night effect during polysomnog-
raphy, and patients’ estimates of sleep quality,” Psychiatry
research, vol. 274, pp. 27-29, 2019.

[3] K. B. Mikkelsen et al., “Self-applied ear-eeg for sleep
monitoring at home,” in 2022 44th annual international
conference of the IEEE engineering in Medicine & Biology
Society (EMBC), IEEE, 2022, pp. 3135-3138.

[4] K. B. Mikkelsen er al., “Automatic sleep staging using
ear-eeg,” Biomedical engineering online, vol. 16, pp. 1-15,
2017.

[S] Y. R. Tabar et al., “At-home sleep monitoring using generic
ear-eeg,” Frontiers in neuroscience, vol. 17, p. 987578,
2023.

[6] K. B. Mikkelsen er al., “Accurate whole-night sleep mon-
itoring with dry-contact ear-eeg,” Scientific reports, vol. 9,
no. 1, p. 16824, 2019.

[71 K. B. Mikkelsen et al., “Sleep monitoring using ear-centered
setups: Investigating the influence from electrode config-
urations,” IEEE Transactions on Biomedical Engineering,
vol. 69, no. 5, pp. 1564-1572, 2021.

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

Y. R. Tabar et al., “Ear-eeg for sleep assessment: A compar-
ison with actigraphy and psg,” Sleep and Breathing, vol. 25,
pp. 1693-1705, 2021.

M. Braun et al., “A systematic review on the technical
feasibility of home-polysomnography for diagnosis of sleep
disorders in adults,” Current Sleep Medicine Reports, pp. 1—
13, 2024.

M. Perslev et al., “U-sleep: Resilient high-frequency sleep
staging,” NPJ digital medicine, vol. 4, no. 1, p. 72, 2021.
J. Strgm, A. L. Engholm, K. P. Lorenzen, and K. B.
Mikkelsen, “Common sleep data pipeline for combined data
sets,” Plos one, vol. 19, no. 8, €0307202, 2024.

J. P. Bakker et al., “Gastric banding surgery versus con-
tinuous positive airway pressure for obstructive sleep ap-
nea: A randomized controlled trial,” American journal of
respiratory and critical care medicine, vol. 197, no. 8,
pp. 1080-1083, 2018.

G.-Q. Zhang et al., “The national sleep research resource:
Towards a sleep data commons,” Journal of the American
Medical Informatics Association, vol. 25, no. 10, pp. 1351-
1358, 2018.

C. L. Rosen et al., “Prevalence and risk factors for sleep-
disordered breathing in 8-to 11-year-old children: Associa-
tion with race and prematurity,” The Journal of pediatrics,
vol. 142, no. 4, pp. 383-389, 2003.

S. Redline et al., “The familial aggregation of obstructive
sleep apnea.,” American journal of respiratory and critical
care medicine, vol. 151, no. 3, pp. 682-687, 1995.

C. L. Marcus et al., “A randomized trial of adenotonsillec-
tomy for childhood sleep apnea,” New England Journal of
Medicine, vol. 368, no. 25, pp. 2366-2376, 2013.

C. L. Rosen et al., “A multisite randomized trial of portable
sleep studies and positive airway pressure autotitration ver-
sus laboratory-based polysomnography for the diagnosis and
treatment of obstructive sleep apnea: The homepap study,”
Sleep, vol. 35, no. 6, pp. 757-767, 2012.

X. Chen et al., “Racial/ethnic differences in sleep distur-
bances: The multi-ethnic study of atherosclerosis (mesa),”
Sleep, vol. 38, no. 6, pp. 877-888, 2015.

T. Blackwell et al., “Associations between sleep architec-
ture and sleep-disordered breathing and cognition in older
community-dwelling men: The osteoporotic fractures in men
sleep study,” Journal of the American Geriatrics Society,
vol. 59, no. 12, pp. 2217-2225, 2011.

B. Kemp et al.,, “Analysis of a sleep-dependent neuronal
feedback loop: The slow-wave microcontinuity of the eeg,”
IEEE Transactions on Biomedical Engineering, vol. 47,
no. 9, pp. 1185-1194, 2000.

S. F. Quan et al.,, “The sleep heart health study: Design,
rationale, and methods,” Sleep, vol. 20, no. 12, pp. 1077—
1085, 1997.

A. P. Spira et al., “Sleep-disordered breathing and cogni-
tion in older women,” Journal of the American Geriatrics
Society, vol. 56, no. 1, pp. 45-50, 2008.

K. B. Mikkelsen, Y. R. Tabar, and P. Kidmose, “Predicting
sleep classification performance without labels,” in 2020
42nd Annual International Conference of the IEEE En-
gineering in Medicine & Biology Society (EMBC), 1EEE,
2020, pp. 645-648.

M. L. McHugh, “Interrater reliability: The kappa statistic,”
Biochemia medica, vol. 22, no. 3, pp. 276-282, 2012.

T. W. Kjaer et al., “Repeated automatic sleep scoring based
on ear-eeg is a valuable alternative to manually scored
polysomnography,” PLOS Digital Health, vol. 1, no. 10,
e0000134, 2022.

Manuscript 825 submitted to 47th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC) . Received February 8, 2025.



