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Abstract— A single physiological measurement reflects the
momentary physiology under the given circumstances. Longi-
tudinal measurements of a key physiological health indicator,
such as heart rate, provide a more comprehensive picture of
the physiological condition compared to a single measurement.
Recently, a cardiovascular phenomenon synchronized to the
heartbeat were recorded from the ear using body-coupled
microphones. This indicates that heart rate may be estimated
using body-coupled microphones. The present study explores
the feasibility of extracting time-varying heart rates using body-
coupled microphones in the ears. Method: 10 subjects were
recorded in a supine position for 5 minutes, with a body-coupled
microphone (BCM) mounted in each ear. Heart rate (HR) was
estimated from the BCM recordings using the PYIN pitch de-
tection algorithm. Since PYIN is traditionally applied to speech
data, a grid search was conducted to optimize hyperparameters
for BCM-based HR estimation. The HR estimates were system-
atically compared to electrocardiography based HR estimations
in terms of detection rate, error distribution, and root-mean-
square error (RMSE). Results: In 9 out of 19 recorded ears,
the RMSE was below 4 beats per minute (BPM). However,
4 out of 10 subjects exhibited both low detection rates and
high RMSE, indicating substantial variability in performance
across individuals. Discussion: The study revealed considerable
inter-ear variability in both the detection rate and the HR
error distribution. This variability likely reflects differences in
how well cardiovascular activity is represented in the BCM
signal, as well as the algorithm’s ability to reliably extract
the periodicity of the signal. The error distributions suggest
that BCM-based HR estimation is unbiased. Conclusion: These
findings demonstrate the feasibility of HR estimation using
BCM in the ear.

Clinical Relevance—Ear-level sensing is an emerging tech-
nology with broad applications in health monitoring. This
study demonstrates the feasibility of enhancing ear-centered
sensing devices with BCM-based cardiovascular monitoring
capabilities.

I. INTRODUCTION

A single physiological measurement reflects the momen-
tary physiology under the given circumstances. It does not
capture temporal variations or responses under different con-
ditions. Longitudinal measurements across diverse conditions
provide a more comprehensive picture of the physiological
condition, thus motivating monitoring outside controlled
laboratory settings.

A key physiological health indicator of interest for longitu-
dinal measurements is heart rate (HR). The primary modality
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used to measure HR is electrocardiography (ECG). This is
measured using electrodes affixed to the subject, typically
on the torso and extremities. To perform ECG measure-
ments correctly, the electrodes must be affixed in the proper
anatomical locations by a trained professional [1]. This limits
traditional ECG to laboratory settings. A Holter monitor
could be an alternative to bring ECG measurements outside
the laboratory. This is still limited by electrodes needing
to be mounted by trained professionals. For HR and heart
rate variability (HRV) measurements, photoplethysmography
have been widely used in wearable consumer electronics,
such as smart and fitness watches. Such alternatives that do
not require a trained professional allow HR measurements to
be conducted outside laboratory settings.

Solid work has already been done on moving electroen-
cephalography (EEG) out of the laboratory setting using ear-
EEG [2]. This modality is measured using custom ear-pieces,
which the subject can correctly mount without supervision
[2], [3]. These ear-pieces provide a flexible platform that can
be used by other sensing modalities.

Recently, blood pressure waves were recorded from the
ear using a novel modality, the so-called body-coupled
microphone (BCM) [4]. The blood pressure waves are syn-
chronized with the heartbeat. This indicates that a BCM
mounted in the ear could be a good alternative to ECG for
determining HR. Therefore, we aim to extract time-varying
heart rates using BCMs mounted in the ears.

II. METHOD

A. Experimental setup & paradigm

This manuscript is part of a larger study where 10 healthy
subjects with no prior knowledge of cardiovascular symp-
toms were recruited. The subjects were affixed with ECG
electrodes on the torso and a BCM mounted in each ear and
asked to lie supine for 5 minutes. For further detail, see [4].

B. Heart rate detection

Extracting HR from a time-series can be considered a
matter of finding periodicities in quasi-stationary signals.
This is a challenge known from multiple domains. In speech
processing this is known as pitch detection. The pitch, which
constitutes the instantaneous fundamental frequency of a
quasi-periodic time-series is detected. The HR can then be
estimated as the pitch detected in the BCM signals.

A commonly employed algorithm for pitch detection in
speech signals is the YIN algorithm [5], along with its
advanced variant, the PYIN algorithm [6], which handles
the thresholds within the algorithm in a probabilistic way. In
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this work we used the librosa implementation of the PYIN
algorithm [7].

A commonly employed algorithm for pitch detection in
speech signals is the YIN algorithm [5]. An advanced
extension to this is the PYIN algorithm [6], which handles
thresholds within the algorithm in a probabilistic way. In
this work we used the librosa implementation of the PYIN
algorithm [7].

This implementation of the algorithm has certain hy-
perparameters which can be tuned. Since the algorithm is
applied to pitch detection in a modality different from the
one for which it was originally developed, we considered
it essential to explore the hyperparameter space for this
new modality. To this end, we conducted a grid search
in the hyperparameter space, were, the mean of the beta
distribution (µβ = 0.05,0.1, . . . ,0.5), the Boltzmann param-
eter (λ = 0.5,0.1, . . . ,10), and the switch probability (P =
0.0002,0.0004, . . . ,0.002). In summary, 2000 parameter sets
were investigated.

The mean of the beta distribution is given by,

µβ =
α

α +β
, (1)

where α and β are shaping parameters. The shaping param-
eters used for the grid search can be seen in Table I.

To allow a rigorous validation of the BCM-based estimated
HR, the ground truth HR was derived from the ECG signals
using the following procedure. First, the ECG R-peaks were
identified from lead II with the algorithm used in [4]. This
resulted in a list of indices, with ECG R-peaks, which was
then converted to an impulse train, with the same sample
distance as the original ECG signal. A Hann window were
then slid with a fixed interval over the impulse train and HR
was computed at the center of the window, as the sum of
impulses within the window, normalized by the area of the
window.

For both ECG and BCM signals, HR were extracted using
15 s windows which moved in steps of 100 ms. The BCM
signals were bandpass filtered with a lower cut-off at 0.1 Hz
and upper cut-off at 45 Hz. Additionally, a 50 Hz notch filter
was used to attenuate power-line noise.

C. Evaluation

Mean square error (MSE) was chosen as the optimization
criterion. The MSE is defined as,

MSE =
1
N

N

∑
i=1

(ei)
2 , (2)

TABLE I
THE BETA DISTRIBUTION MEAN VALUE, AND THE CORRESPONDING

SHAPING PARAMETERS, USED IN THE HYPERPARAMETER GRID SEARCH

Values
µβ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

α 2 2 3 2 2 3 2.1 2 2.7 3
β 38 18 17 8 6 7 3.9 3 3.3 3

with the error, ei = HRi,ECG −HRi,BCM , where HRi,ECG and
HRi,BCM is the HR from the ith interval estimated from the
ECG and BCM signals respectively.

The hyperparameter search were executed as 10 runs in
a leave-one-subject-out fashion. In each run, the MSE was
computed for the 9 remaining subject, for each ear for each
parameter set. The optimal parameter set of the run were
found as the set with the lowest MSE across ears for a
subset of the remaining subjects. The most frequent per run
parameter set were identified as a single optimal parameter
set. This single optimal parameter set were validated against
each subject, where the error were computed as in (2) for
each ear in addition to root means square error (RMSE).

III. RESULTS

In the following the results from the hyperparameter grid
search will be presented, as well as how the selected optimal
parameter set performs. The selected optimal parameter set
can be seen on Table II.

A comparison of performance on select subjects, using
the optimal hyperparameter set with select segments of the
underlying signal traces, can be seen on Fig. 1(a) and 1(b).
Traces in the upper pane show BCM left ear, BCM right ear
and ECG lead II signal respectively. These are in arbitrary
units and have been normalized to 1 standard deviation, and
biased for better visualization. Gray dots on the trace of
ECG lead II denote the detected ECG R-peak used for the
ECG HR estimates. Generally, the left upper pane is from
an earlier time interval than the right.

The upper axis in the lower pane shows HR in beats per
minute (BPM) for the BCM left ear, BCM right ear and
ECG lead II respectively. The lower axis shows the error
between BCM left ear, and BCM right ear and ECG lead
II respectively, using (2). Additionally, a dashed line has
been added to better visualize when the distribution of errors
compared to an error of 0 BPM. Note that in the lower
pane, BCM-based estimates are piecewise constant because
the estimation window was moved in steps of 100 ms. The
top panes have been colored, such that they match the colored
regions of the lower pane. This indicates at which time
intervals the segments in the upper pane coincide with the
traces in the lower pane.

Results on validation can be seen on Fig. 2, where the
distribution of errors for each ear for each subject can be
seen. It should be noted that the left ear wire had snapped
for subject 5 and was therefore been excluded.

Finally, summarized results from the validation can be
seen on Table III. Here RMSE can be seen for each ear for
each subject, as well as how many percent of the possible
HR estimations were successful.

TABLE II
OPTIMAL HYPERPARAMETERS FOUND IN THE GRID SEARCH

µβ (α,β ) λ P
Value 0.25 (2,6) 1.0 0.0008
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(a) Performance on subject 1. (Top, left) HR detection is successful. (Top, right) HR detection has failed for BCM right ear.
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(b) Performance on subject 2. (Top, left) HR detection is incorrect for both BCM left and right ear. (Top, right) HR detection is
successful.

Fig. 1. Traces of BCM left ear, BCM right ear, and ECG signals respectively. Gray dots denote detected ECG R-peaks. (Bottom: (a), (b)) Upper axis
shows estimated heart rate, while the lower axis shows the error for BCM left ear and BCM right ear. Colored rectangles denote the extent of segments
shown in top panes.
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TABLE III
SUMMARY OF RMSE AND PERCENT DETECTED FROM VALIDATION OF OPTIMAL PARAMETER SET FOR EACH EAR, FOR EACH SUBJECT.

Subject 1 2 3 4 5 6 7 8 9 10

RMSE (BPM) Left 1.21 2.42 4.21 7.07 - 11.03 7.24 3.28 7.55 3.85
Right 1.70 2.21 3.59 14.22 5.17 15.42 10.57 3.03 24.01 7.77

Detected (%) Left 99.5 93.1 92.4 91.3 - 40.9 66.6 95.0 80.7 93.4
Right 97.2 99.7 52.9 27.7 72.5 29.0 86.4 99.4 70.8 84.0
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Fig. 2. Distribution of heart rate estimation error across all subjects for
left and right ear, using optimal hyperparameter set. Dashed lines within
distributions denote mean, and 1st and 3rd quantile.

IV. DISCUSSION

A. Selected hyperparameters

Based on a coarse grid search within the hyperparameter
space, we selected the set of hyperparameters listed in Table
II, corresponding to the lowest MSE. Notably, none of the
selected hyperparameters are at the boundaries of the search
space, indicating that the identified optimum is determined
by the topography of the optimization criteria, rather than
constrained by the grid search boundaries.

The mean of the beta distribution (µβ ) affects the proba-
bility of some periodicity being detected. As the probability
of detecting some periodicity is increased, so may the
probability of detecting a false positive increase. That is, the
detection of some periodicity where there is none. In contrast,
lowering the probability of detecting some periodicity may
lead to the detection of a present periodicity being missed.
That is, the probability of false negatives increase. As such,
adjusting µβ is a trade-off between false positive and false
negative detections respectively. As the signals are generally
highly periodic as indicated by inspecting the top panes of
Fig. 1, favoring an increased µβ may be ideal.

The Boltzmann shaping parameter (λ ) shifts the mass of
a Boltzmann distribution within the PYIN algorithm. This
mass is either shifted towards the selection of smaller or
larger cardiac cycle periods. A smaller λ shifts mass towards
larger cardiac cycle period [7]. Assuming a normal resting
heart rate of 60 BPM [8], a period is expected to be 1 s.
This indicates that the periodicity of the cardiac cycle is in
the scale of second. As such, a small λ is not surprising.

The switch probability (P) is the probability of changing
from an HR detected state to a not detected state or vice
versa. With the combination of subjects lying supine and
minimizing artifacts, and a large µβ , it should be reasonable
to assume that some periodicity will be present for the dura-
tion of the recording. Because of this, it is not unreasonable
to expect that the probability of shifting to a not detected state
should be small. It should be noted that other physiological
circumstances may not have these favorable conditions. As
such, a conservative P might not be ideal if the presence of
artifacts are increased.

B. Heart rate estimation performance

The results presented in Table III and Fig. 2 show a signif-
icant variability in the proportion of time intervals yielding
an HR estimate, as well as in the accuracy and precision
of the HR estimates. These results reflect a combination of
how well cardiovascular activity is represented in the BCM
signal and the detection algorithm’s ability to reliably extract
the periodicity of the available signal. In the assessment of
the feasibility of extracting time-varying heart rates using
ear-positioned body-coupled microphones, these two aspects
have not been disentangled. Therefore, performance may be
improved by optimizing the BCM and its placement within
the ear, as well as by improving the detection algorithm.

In the assessment of these results we note that (1) the
performance requirements will depend on the intended appli-
cation of the HR estimate, and (2) the purpose of this study is
to assess the feasibility of HR estimation using BCM, rather
than to provide a quantitative validation of a system.

From Table III it is seen that three (1, 2, and 8) out of ten
subjects had a high detection rate (> 95%) on both ears, and
additional three subjects (3, 4, and 10) had a high detection
rate (> 90%) on at least one ear. Seven out of these nine
ears had a RMSE below 4 BPM, and nine out of the total
nineteen ears had a RMSE below 4 BPM.

In general, we observe a strong correlation between de-
tection rate and RMSE, with higher detection rates corre-
sponding to lower RMSE. This relationship is likely driven
by a reinforcing effect: (1) when the cardiovascular activity
is well-represented in the BCM signal, HR estimation is
feasible over a larger proportion of time, and (2) when HR
can be reliably estimated due to the better representation of
the cardiovascular activity, the resulting estimates achieve
better precision and accuracy. This is a typical tradeoff
between sensitivity and specificity and can be exemplified
by subject 3, in which the RMSE of the right ear is possibly
kept lower due to the low detection rate; if the threshold for
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detections were lowered, this would lead to a higher detection
rate and consequently higher RMSE. We also observe a high
correlation between high RMSE and the tendency for outliers
in the HR-estimate as seen from the right ear of subject 4,
6, 7 and 9 in Fig. 2 Lastly, four (5, 6, 7, and 9) out of ten
subjects had in general a low performance both in terms of
low detection rate and high RMSE.

The error distributions presented in Fig. 2 show that the
mean error varies across ears, with some ears having a
positive mean error and others having a negative mean error,
suggesting that the HR estimation is not in general biased.
Additionally, ears with low variance and a low amount of
outliers tend to have a mean error close to zero.

Segments where detection of HR is achieved with small
error can be seen on Fig. 1(a) and 1(b) respectively. This is
achieved even with the morphology of the BCM signals are
noticeably different for the left and right ear on Fig. 1(b).

A segment where detection fails for the left ear can also
be seen on the top right pane of Fig. 1(a). An artifact around
275 s may be the cause, it can however be hard to determine
if this is the case, as a smaller but albeit similar artifact is
visible at the same time for the right ear.

Additionally, a segment where HR detection is off can be
seen on the top left pane of Fig. 1(b). No apparent reason
indicates, why the HR estimation is off for this segment.

When subjects are lying supine, a difference in HR of
above 15 BPM when measuring beat-to-beat HRV is normal
[9, p. 383]. At a resting HR of 60 BPM, this amounts to a
beat-to-beat change of more than 200 ms for a single heart
rate or a local change in instantaneous frequency of more
than 250 mHz.

The PYIN algorithm searches for periodicities utilizing
autocorrelation. HRV reflects deviations in HR periodicity.
Therefore, the larger the HRV, the less distinct the HR
will appear as a periodicity in the autocorrelation function.
Consequently, HR estimation under conditions with high
HRV will likely be harder than conditions with low HRV.

Moreover, conventional ECG-based HRV estimation re-
lies on R-to-R peak detection, utilizing information from
approximately one heart cycle [10]. In contrast, methods
based on autocorrelation, such as PYIN, typically estimate
the autocorrelation over several periods of the underlying
periodicity. Consequently, HRV metrics quantifying inter-
beat variability are likely to be smoothed out by the auto-
correlation estimation, whereas metrics quantifying changes
over a longer time horizon will remain unaffected.

In interpreting the study’s results, it is important to note
that measurements were conducted on participants in a
supine position. Consequently, the data represents only a
limited subset of cardiovascular activity variations that occur
under other physiological conditions. Furthermore, other
physiological conditions, such as physical exercise, may
introduce various types of interference and artifacts that were
not accounted for in the current study. Therefore, the results
presented here may not be representative of other conditions.

V. CONCLUSION

The results demonstrate the feasibility of heart rate esti-
mation from BCMs in the ear, paving the way for integrat-
ing BCM-based cardiovascular monitoring into ear-centered
sensing devices.
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