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Abstract— In multimodal hyperscanning, multiple signal
modalities are collected simultaneously from multiple par-
ticipants. Temporal synchronization of sensor nodes in such
scenarios is crucial for analyzing temporal dependencies across
participants and modalities.

Here, we present an overview of challenges, methods and
best practices for achieving precise temporal synchronization in
multimodal hyperscanning studies. We discuss various methods
for temporal synchronization, the challenges involved, and the
implications for data analysis and interpretation.

We also present analysis and considerations on the effects
of sampling clock mismatches between nodes in a system, and
provide guidance on how to quantify trigger offsets and noise
in a recording setup.

By providing an overview of different methods, we aim to
guide researchers in optimizing their experimental designs for
successful multimodal hyperscanning studies.

I. INTRODUCTION

Temporal synchronization of data is crucial in hyper-
scanning, where brain activity from multiple participants
are recorded simultaneously [1]. Analyses of hyperscanning
data often rely on inter-subject comparisons, with tempo-
ral analysis methods such as correlation-based techniques
commonly employed to investigate inter-brain connectivity
and synchronization [2], [3]. Also, methods based on phase
and envelope coupling are frequently employed to assess the
temporal relationships between neural signals from different
participants [4], [5].

Moreover, when conducting recordings with a multimodal
setup, temporal alignment between modalities is vital to
obtain a comprehensive understanding of how different me-
chanisms, such as physiological and behavioral processes,
are temporally connected [6]. This is particularly important
in multimodal hyperscanning setups, where data from various
sources, such as EEG, fNIRS, pulse oximetry, and behavioral
measures, need to be synchronized accurately both within the
participant and between participants, to provide a holistic
view of the interactions between different systems.

The goal is often to achieve sample-level synchronization
[7], [8], where recordings are synchronized in time, sample-
by-sample. However, in some cases, it might be more rele-
vant to align the data to the time where the subject receive
the stimulus of interest. For example, if the stimulus is an
auditory signal presented on a stage, the distance to the stage
will influence when the stimulus reaches the participant. In
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such scenarios, it might be more pertinent to align data in
a hyperscanning study to the time where the subject receive
the stimulus rather than the time of its presentation.

In summary, careful consideration of temporal synchro-
nization is paramount in hyperscanning research to ensure
the validity and reliability of the findings. By addressing
these challenges, researchers can better understand the tem-
poral dynamics of inter-brain connectivity and the interplay
between different physiological and behavioral processes.

In this paper we will focus on the methods and tech-
niques for achieving precise temporal synchronization in
hyperscanning studies, with a particular emphasis on mul-
timodal setups. We will discuss the different methods for
temporal synchronization, the challenges involved, and the
implications for data analysis and interpretation. By pro-
viding an overview of the different methods, we aim to
guide researchers in optimizing their experimental designs
for conducting successful Hyperscanning studies.

II. METHODS

A. Temporal synchronization

When analysis is based on temporal comparison or averag-
ing of features from multiple data sources, it is important to
ensure that the sources are properly synchronized to obtain
meaningful results. Depending on the features of interest,
different types of synchronization might be preferred. Two
primary methods of synchronization are relevant to highlight
here: sample-based synchronization and stimulus-based syn-
chronization.

In some cases, sample-based and stimulus-based synchro-
nization might be interchangeable. However, in other exper-
imental setups, the propagation time of stimuli or behavioral
signals may not be negligible. For instance, when the stimu-
lus is an acoustic signal, differences in the propagation path
length from the sound source to individual participants will
result in different delays, as illustrated in Fig. 1. Another
example is scenarios involving interacting participants, where
the interaction is based on behavior communicated over a
communication channel, where delays in the communication
channel may not be negligible. Such delays can impact not
only the synchronization of data but also the interaction
dynamics themselves.

Considering the setup in Fig. 1, the time of presentation
and perception of visual stimuli would be almost identical.
However, consider auditory stimulation and assume that l1 =
10m and l2 = 1m. Given a sound propagation speed of
v = 343m/s, the difference in time of perception for the
two participants will be ∆t = (l1 − l2)/v = 26ms. Such a
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time difference would be significant in many physiological
responses and should be considered when aligning data in
such a setup.
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Fig. 1: Spatial setup with two participants, p1 and p2,
listening to an audio source (speaker) and viewing a visual
source (monitor).

B. Methods for sample-level synchronization

Synchronization of data can be performed using various
practical implementations. However, the common goal is to
periodically realign data to compensate for potential mis-
matches in the sampling performed by the different sensor
nodes. Here, we highlight four methods to obtain sample-
level synchronization. The methods are illustrated in Fig. 2(a)
to (d).

(a) Clock based: In this method, the sensor nodes share a
common sampling clock, ensuring synchronization on
a sample-by-sample basis. This approach provides the
highest precision of the temporal synchronization, but
is rarely supported by commercial equipment.

(b) Trigger based: The most common method is to use
stimulus locked events (i.e. triggers). In this method, the
same trigger signal is transmitted to all sensor nodes and
sampled together with the sensor data. Synchronization
of data can then be performed at sample-level when a
trigger appears in the recorded data.
Typically, the trigger signal is transmitted via cables.
However, in larger setups, such as large-scale Hyper-
scanning, cable-based alignment can be cumbersome to
set up and may be a possible path for noise interference.
In such cases, wireless trigger distribution might be
more feasible, using methods like infrared light or low-
latency RF protocols such as Zigbee.

(c) RTC based: Synchronization based on a real-time clock
(RTC) involves equipping each sensor node with an
RTC to timestamp the data. The timestamps are then
used to align the data during post-processing. The
accuracy of this method depends on clock mismatches
between and synchronization of the RTCs across sensor
nodes. To obtain the best synchronization, nodes should
be synchronized to a common time source just before
the experiment. This method does not require com-
munication to the sensor nodes during the experiment,
making it particularly advantageous for larger setups.

(d) LAN based: Synchronization based on a local area
network (LAN) can be achieved using various methods,
typically relying on the network clock for synchro-
nization. One of the most widely used methods is the
Lab Streaming Layer (LSL), developed by Kothe et
al. [9]. With well-characterized network and acquisition
equipment, LSL can achieve near sample-level synchro-
nization [9], [10].
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Fig. 2: Illustration of sample-level synchronization methods.
Each sensor node samples data from a sensor, for processing
in the main processing unit (MPU) of the sensor node,
(a) Clock based synchronization, (b) Trigger based synchro-
nization, (c) RTC based synchronization, and (d) LAN based
synchronization.

C. Trigger encoding

In most settings, it is advantageous to send an event ID
with the trigger signal. When multiple trigger inputs are
available on the sensor node, the ID can be encoded as a
parallel signal. However, when only a single trigger input
is available, serial encoding of the event ID can be utilized.
Manchester coding (or similar methods) can be employed
to make the transmission robust to hardware errors and to
enable a variable word length (number of bits) in the event
ID. Fig. 3 illustrates Manchester encoding, where the event

0 0 1 1 0 1

LSB MSB
Start bit

Time
Trig time

f_clk1
Event ID

Fig. 3: Illustration of Manchester coding used for robust
trigger signal transmission.
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Fig. 4: Implementation of the designed trigger box (a) PCB top side, (b) PCB bottom side, (c) PCB mounted in a 3D printed
casing together with a Lithium Ion battery. Design files for the trigger box is available from ece.au.dk/triggerbox [11].

ID is encoded with 5 bits, and the rising edge of the start
bit indicates the time of the trigger. Manchester encoding
is based on a clock, with a frequency, f clk, which should
be below half of the sampling rate of the sensor node with
the lowest sampling rate, to ensure correct decoding of the
trigger. With Manchester coding, each bit period always
has a transition in the middle, and therefore the end of
the event ID is represented by more than one clock period
without a transition. For a Matlab-based implementation
of Manchester encoding/decoding, see gitlab.au.dk/tech ear-
eeg/serialtrigcoder matlab.

D. Trigger sources

Triggers can be generated from various sources, typ-
ically depending on the experimental paradigm. Triggers
often indicate events that are temporally synchronized with
the stimulus of interest for data analysis. Common trigger
sources include:

• Digital, e.g. from a computer presentings the stimulus.
• Sound card, which enable synchronization between au-

diotory stimulus and triggers.
• Optical sensors, which can detect light changes, e.g.

from a monitor.
• Buttons, including mechanical, resistive (FSR), and

capacitive buttons.

E. Trigger interference

Triggers are often aligned with the response of interest,
and therefore, trigger noise in the recorded physiological
signal can be mistaken for a physiological response that is
not actually present. Thus, it is crucial to avoid trigger-related
interference in the physiological signal. Several measures can
be taken to minimize trigger noise in the recorded signal,
including:

• Galvanic isolation between the trigger source and the
sensor nodes.

• Considerate cable routing to optimize spatial distance
between trigger cables and sensor cables, especially
avoiding trigger and sensor cables to run in parallel.

• Battery powering the trigger source to avoid ground
loops.

• Using shielded or twisted pair cables for trigger signals.

Additionally, when working with steady-state responses, the
trigger frequency can be decreased to reduce the power of
potential trigger noise at the response frequency. Further-
more, the temporal alignment between the response and the
triggers can be eliminated by using an aperiodic trig signal
or randomizing the trigger times. The timing of the stimulus
can be determined retrospectively using the known structure
of the trigger times.

F. Trigger box

Generally, the different trigger sources must be converted
to a binary signal to be parsed by most commercial ampli-
fiers. This can be achieved by using thresholding (preferably
with hysteresis) of the analog signal, to obtain a digital signal
that can be fed to the sensor node. This is typically done with
a so-called trigger box. Preferred features of a trigger box
include:

• Galvanic isolation between input and output to avoid
ground loops and provide electrical safety.

• Battery powered, to minimize power line interference
to the trigger signal.

1 
M

O
PP

 is
o

la
tio

n

Battery
supply

thd

hyst

5VISO

GNDISO

outin

Fig. 5: Input-to-output function of the designed trigger box.
The input goes to a comprator, which supports threshold
(thd) and hysteresis (hyst) adjustments. The output from the
comperator is directed to a digital isolator, connected to a
push-pull output. In addition, the supply from the input stage
is galvanically isolated from the output stage, as illustrated
with the 5VISO and GNDISO supply.
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• Low-latency from trigger input to trigger output.
• Adjustable threshold and hysteresis.
To meet these requirements, we designed at trigger box

with the input-to-output function shown in Fig 5. The input
signal is fed to a comperator, for which the threshold and hys-
teresis can be adjusted with two potentiometers. The output
from the comperator is passed through a digital isolator, com-
plying with 1 means of patient protection (MOPP), according
to the IEC60601-1 standard. In addition, the supply from the
input stage is also galvanically isolated from the output stage
with 1 MOPP. The output features a push-pull stage, with a
maximum output current of 50mA. This functionality was
implemented on a printed circuit board (PCB), containing
two identical channels, each corresponding to Fig. 5, along
with related connectors and switches, to obtain flexible input
and output connections. The final PCB is illustrated in Fig.
4(a) and (b) along with a picture of the PCB mounted in a
3D printed casing in Fig. 4(c). The design files for the trigger
box is available from ece.au.dk/triggerbox [11].

G. Effect of sample clock mismatch

Mismatch in sample clock between sensors nodes will
always be present, unless the sensor nodes share the sampling
clock. Mismatches can be minimized by using clock sources
with low tolerance and drift. As described in Section II-
B, triggers can be utilized to realign data in the post-
processing. However, if the interval between triggers is too
large, misalignment of data between triggers might still be an
issue. Synchronization of recordings with RTC time stamps
corresponds to having only one trigger in the beginning of
the recording to support the synchronization. Thus, mismatch
in sampling clocks between sensor nodes synchronized with
RTC will developed over the course of the recording.

The effect of mismatch between the sampling clock of two
sensor nodes can be expressed as the correlation between
recordings from the two sensor nodes. As an example, lets
consider two sinusoidal signals, S1(n) and S2(n), sampled
with sampling clocks FS1 and FS2, respectively. The corre-
lation coefficient between the two signals can be expressed
as

r12(0) =
1

N

N∑
n=0

S1(n) · S2(n) (1)

where, S1(n) = sin(ω · n/FS1), S2(n) = sin(ω · n/FS2),
FS2 = FS1 · (1 + a · 10−6), and ω is the angular frequency
of the sinusoid.

Inserting the expression for S1(n) and S2(n), results in

r12(0) =
1

N
· 1
2

N∑
n=0

cos
(
ω · n ·

(
1

FS1
− 1

FS2

))
− cos

(
ω · n ·

(
1

FS1
+ 1

FS2

)) (2)

For N ≫ ω/(2π), the last term in equation 2 is ne-
glectable, and the correlation reduces to

r12(0) =
1

2N

N∑
n=0

cos
(
ω · n ·

(
1

FS1
− 1

FS2

))
(3)

If we consider this as a Riemann sum approximation of
the integral of a cosine, equation 3 can be expressed as

r12(0) =
1

2N
· 1

ω
(

1
FS1

− 1
FS2

) · sin
(
ω · n ·

(
1

FS1
− 1

FS2

))
(4)

The correlation at FS2 = FS1 is r11(0) = 1
2 . Thus, the

normalized correlation can be expressed as

r̂12(0) =

∣∣∣∣r12(0)r11(0)

∣∣∣∣ =
∣∣∣∣∣∣
sin

(
ω · n ·

(
1

FS1
− 1

FS2

))
ω ·N ·

(
1

FS1
− 1

FS2

)
∣∣∣∣∣∣ (5)

From equation 5 we see that the normalized correlation
depends on

1) The mismatch in the sampling clocks, (1/FS1−1/FS2)
2) The duration of the signal, N
3) The frequency of the sinusoidal signals, ω.

III. RESULTS AND DISCUSSION

In the following, we elaborate on the effects of sample
clock mismatch, methods to quantify trigger offsets, and
trigger interence in the recording setup.

A. Effects of sample clock mismatch

Fig. 6 illustrates the effect of sample clock mismatch
between sensor nodes at a frequency of 20 Hz. The figure
shows the normalized correlation, r̂12(0), as a function of
clock mismatch (in ppm) for various analysis windows. It
demonstrates how a mismatch has a larger effect when the
window is increased, as the mismatch accumulates over time.

Fig. 7 illustrates the effect of frequency for a clock
mismatch of 100 ppm between sensor nodes. The figure
shows the normalized correlation, r̂12(0), as a function of
the frequency for various analysis windows. It illustrates
how the effect of clock mismatch is more pronounced for
larger analysis windows and higher frequencies. Correlation-
based measures are commonly used in hyperscanning studies
to investigate inter-brain connectivity and synchronization
[2]–[4]. Figs. 6 and 7 highlight the importance of precise
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Fig. 6: Effect of clock mismatch between nodes, at a
frequency of 20 Hz. The normalized correlation, r̂12(0), is
shown as a function of sampling clock mismatch (in ppm)
for various analysis windows, as given in the legend.
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Fig. 7: Effect of frequency, for a clock mismatch of 100ppm
between sensor nodes. The normalized correlation, r̂12(0),
is shown as a function of the frequency for various analysis
windows, as given in the legend.

synchronization between sensor nodes to obtain valid and
reliable results in hyperscanning studies. The results show
that the effect of clock mismatch is more pronounced for
larger analysis windows and higher frequencies. Therefore,
it is crucial to carefully consider the needed synchronization
strategy for a study, to ensure the necessary synchronization
within the analysis window of interest. For example, if
the required sampling clock mismatch cannot be achieved,
trigger or LAN-based synchronization can be utilized, as
described in Section II-B. If the necessary synchronization is
not obtained, the response amplitude might be reduced as a
consequence, and thus may not reflect the true physiological
response amplitude.

B. Quantifying trigger offsets

When working with RTC or LAN-based synchronization
of sensor nodes, unexpected and varying offset latencies can
occur. Therefore, it is crucial to characterize the setup before
the experiment to ensure that the synchronization meets the
requirements. One approach is to use a cable-based trigger as
a reference point for the characterization. Here, we generated
a trigger at 100 Hz using a waveform generator (Agilent
33500B Series) connected to two sensor nodes (Raspberry
Pi Zero 2 W), which were timestamping and streaming data
via LSL over a wireless LAN. To avoid including clock
mismatches between sensor nodes in the characterization, the
sensor nodes shared the same sampling clock. The trigger
signal was initiated right after starting the recording and
was deactivated just before the recording ended. The offsets
between sensor nodes were then calculated trigger by trigger.
Fig. 8(a) shows a histogram of the calculated offsets between
two nodes from a ten minutes long recording, and in Fig. 8(b)
is plotted five seconds of the offsets. Both sensor nodes in the
experiment were sampling at 500 Hz, and thus, the variation
in the offsets is well within +/- 1 sample period, indicating
sample-level synchronization. To ensure representative data,
it is recommended to perform such characterization of offsets
for all sessions of an experiment and with the full experi-
mental setup, including recording devices, the network, and
the computers streaming and receiving LSL streams.
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(b) Five seconds of the offsets between two nodes.

Fig. 8: Characterization of trigger offsets between two sensor
nodes.

C. Characterization of trigger interference in the recording
setup

Often, triggers are phase-locked to the signal of interest,
and therefore trigger-related artifacts in the data can be
difficult to distinguish from the response of interest. Thus, it
can be important to perform a negative control to characterize
the level of trigger noise in a recording setup and to rule
out issues with the analysis pipeline. A common practice is
to perform a recording that represents the final setup, but
without presenting the stimulus to the participant. The data
can then be analyzed with the analysis pipeline, to confirm
the absence of false reponses due to trigger interference.

IV. CONCLUSION

In this paper, we have discussed the importance of precise
temporal synchronization in hyperscanning studies, with a
particular emphasis on multimodal setups. The paper has
provided an overview of the different methods for achieving
temporal synchronization, the challenges involved, and the
implications for data analysis and interpretation. Addressing
these aspects is anticipated to contribute to the improvement
of experimental research in multimodal and hyperscanning
studies, thereby advancing the understanding of temporal dy-
namics of inter-brain connectivity and the interplay between
physiological and behavioral processes.
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