
  

  

Abstract — Polysomnography is an extensive evaluation of 

several physiological measures and the gold standard technique 

for clinical sleep assessment. However, this technique is both 

resource-expensive and often unfeasible over multiple nights. 

Ongoing research has shown that ear-EEG technology combined 

with the model-based automatic sleep scoring can be used for 

long-term sleep monitoring. More work is needed to robustly 

adapt clinical polysomnography-based sleep scoring models to 

at-home ear-EEG-based sleep patterns. Here, we investigated 

the main and combined benefits of utilizing three different 

strategies to adapt sleep scoring models from scalp- (part of 

polysomnography) to ear-EEG: 1) fine-tuning of the sleep 

scoring model to left-right mastoid scalp-EEG, 2) fine-tuning of 

the sleep scoring model to ear-EEG and 3) ensemble prediction. 

The results showed that all strategies applied in isolation 

improve the sleep scoring performance on ear-EEG data relative 

to the not adapted model. With combined two or three strategies, 

sleep scoring performance on ear-EEG reaches performance 

comparable with sleep scoring on scalp-EEG (from κ 0.71 to 

0.83; from κ 0.67 to 0.77; from κ 0.57 to 0.68 in three data sets). 

 
Clinical Relevance— This study demonstrates that current 

crosshead ear-EEG technology, combined with advanced sleep 

scoring models, enables accurate at-home sleep monitoring. 

Furthermore, tailoring sleep scoring models to ear-EEG data 

enhances identification of the sleep architecture. 

 
Keywords—ear-EEG, automatic sleep scoring, fine-tuning, 

left-right mastoid, ensemble prediction, U-Sleep 

I. INTRODUCTION 

Polysomnography (PSG) is a multimodal monitoring 

technique and the reference standard for clinical sleep 

assessment.  PSG recording setups are technically complex 

and require supervision of clinical personnel, typically over 

a single or a few nights. PSG-based sleep assessments have 

several additional limitations. First, the intrusive nature of 

the recording setup affects the sleep patterns [1][2]. Second, 

single-night recordings do not account for inter-night 

variability, limiting the assessment of sleep dynamics over 

time. For these reasons, PSG is not feasible for long-term 

sleep monitoring.  
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Therefore, to facilitate more accessible and representative 

methods for sleep assessment, minimally obtrusive devices 

suitable for long-term sleep monitoring in the patient's 

natural environment are required. In pursuit of this goal, 

numerous portable and less intrusive devices have been 

proposed [3][4]. Among these emerging technologies for 

sleep assessment are so-called ear-EEG devices, which are 

based on electrodes around- or in-the-ear [5]. Furthermore, 

to fully leverage the potential of long-term sleep monitoring 

using portable devices - which typically feature a highly 

reduced set of sensing modalities - automated sleep 

assessment procedures are essential. 

The objective of this study was to investigate various 

strategies for adapting sleep models from scalp-EEG (part of 

the PSG setup) to ear-EEG. In machine learning 

terminology, model adaptation constitutes a domain transfer 

learning problem and implicitly raises the question of 

differences between the two domains. Two main factors 

contribute to these differences. First, scalp-EEG and ear-

EEG represent different projections of the underlying neural 

sources. More specifically, the lead field matrix, 

representing the transfer function from source space to 

measurement space, differs between the two modalities [6]. 

Second, the instrumentation and measurement setups for 

scalp-EEG and ear-EEG vary in several respects, including 

electrode type and size, wet or dry electrode-skin interfaces, 

methods for retaining electrodes against the body, and 

amplifier electrical characteristics [7]. These factors 

collectively affect noise properties and susceptibility to 

electrical, physiological, and motion artifacts. 

To adapt sleep scoring models from scalp-EEG to ear-

EEG, we assessed the potential benefits of three strategies, in 

isolation as well as in combination. Due to factors described 

above and previous work on optimal electrode configurations 

[8], we applied sleep scoring models to signal derivatives 

calculated across head by re-referencing the recorded signals. 

Those were left-right mastoid scalp-EEG derivative in PSG 

and crosshead ear-EEG derivative. Firstly, we fine-tuned a 
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scalp-EEG-based sleep scoring model to a signal mimicking 

a crosshead ear-EEG derivative before testing it on the actual 

ear-EEG data. Secondly, we fine-tuned a scalp-EEG-based 

sleep scoring model to a relatively small subset of ear-EEG 

data and tested its performance on the unseen recordings [9]. 

Thirdly, we used multiple crosshead ear-EEG derivatives to 

predict sleep stages with a scalp-EEG-based sleep scoring 

model. This approach was built on the assumption that 

multiple crosshead ear-EEG would differ more in their 

measurement noise characteristics relative to their 

representation of the underlying neural activity. As a result, a 

combination in the form of ensemble learning would make 

model-based sleep scoring on ear-EEG more robust.  

II. METHODS 

A. Ear-EEG Data Sets 

We used three ear-EEG data sets in the current study.  

Ear-EEG 1 data set was acquired and published in [5]. It 

contains recordings from 20 healthy younger subjects ( = 

25.9 years, range = [22, 36]) across 4 nights. Ear-EEG 2 data 

set was recorded and first published in [10]. It contains 

recordings from 10 healthy younger subjects ( = 27.4 years, 

range = [22, 35]) across 2 nights. Ear-EEG 3 data set contains 

recordings from 15 healthy older ( = 61.3 years, range = [57, 

75]) as well as 7 healthy younger subjects ( = 30.7 years, 

range = [25, 33]) from a single night. This data set is neither 

publicly available nor had it been published in a journal 

before. The data sets differ in the ear-EEG setup they were 

recorded with, which are described in Table I. 

TABLE I.  SUMMARY OF THE EAR-EEG SETUPS ACROSS DATA SETS. 

 Ear-EEG 1 Ear-EEG 2 Ear-EEG 3 

Subjects 

(Older O, 

Younger Y) 

20 

Y: μ = 25.9y, 

[22, 36] 

10  

Y: μ = 27.4y, 

[22, 35] 

15 O: μ = 61.3y, 

[57,75] 
7 Y: μ = 30.7y, 

[25, 33] 

Recordings 
per subject 

4 2 1 

Ear-mold 

design 
Custom Generic Custom 

Electrode 
setup 

6 left + 6 right 3 left + 2 right 3 left + 2 right 

Reference Average Left ear Left ear 

Sampling 
frequency 

500Hz 250Hz 250Hz 

 

All ear-EEG recordings were acquired concurrently with 

PSG. For dataset 1, both PSG and ear-EEG recordings were 

recorded with the same amplifier, and therefore automatically 

aligned [5]. For datasets 2 and 3, the ear-EEG recordings were 

recorded with two different independent amplifiers and 

aligned with PSG based on physiological artifacts which were 

deliberately introduced at the beginning of the recordings 

[10]. Following the signal alignment, human experts’ sleep 

stage labels on PSG recordings were used to label the 

corresponding epochs in the ear-EEG recordings [5], [10].   

B. Pre-processing of the Ear-EEG  

All data sets were pre-processed in the same way. To start 
with, the recorded ear-EEG signals were corrected for the DC-
values by subtracting the mean, and bandpass filtered between 

0.1 and 100Hz. Afterwards, notch filters at 50Hz and 100Hz 
were applied to remove a powerline noise. Then, artifacts 
including out-of-range values, electrode spikes, excessive 
subject movement and EMG artifacts were removed from the 
signal by an automated process described in [5]. Gaps caused 
by the artifacts’ removal were set to empty values (NaNs). At 
last, recorded ear-EEG signals were resampled to the same 
sampling frequency 128Hz to align with the procedure used 
for training the original sleep scoring model as described in 
[11]. Recorded signals were divided into 30-s-long non-
overlapping epochs and each epoch was associated with a 
label. Recorded signals consisting of more than 30% artifact-
full samples were considered invalid, set to empty values 
(NaNs) and excluded from further analysis. A total of 134 
recorded ear-EEG signals out of 1128 (11.9%) were 
considered invalid. Invalid signals were neither used to obtain 
crosshead ear-EEG derivatives nor to predict sleep stages.  

To obtain crosshead ear-EEG derivatives, several steps 
were performed. First, recorded signals were re-referenced             
to the average of all signals (samples and derivatives 
previously considered as artefacts were not used to calculate 
the average). In the ear-EEG 2&3 data sets, the reference 
electrode (see Table I) was introduced as a vector filled with 
zeros of the same length as the recorded signals prior to the re-
referencing. Secondly, a set of crosshead derivatives was 
calculated: 1) a single crosshead derivative was calculated by 
subtracting the average of the left ear from the average of the 
right ear [5]; 2) an average of the opposite ear was subtracted 
from each individual re-referenced signal. The second 
approach was used to predict sleep stages based on the 
ensemble of crosshead derivatives (see section II, E.2). Newly 
created crosshead ear-EEG derivatives constructed from 
invalid signals (see paragraph above) were removed from 
further analysis. At last, gaps were filled in with a temporal 
linear interpolation.  The procedure ensured that all crosshead 
derivatives used for sleep scoring were comparable 
(harmonized) across datasets.  

C. Sleep Scoring Labels 

All ear-EEG recordings were acquired concurrently with 

PSG. Professional sleep scorers assigned labels to all 30-s-

long epochs in the PSG recordings following the American 

Academy of Sleep Medicine Manual [12]. Sleep scorers were 

blinded to the ear-EEG data. Epochs that were difficult to 

score by a sleep scorer were marked as UNKNOWN. 

Furthermore, epochs containing any invalid samples (see 

section II B) were re-labelled as NOISE. This was done for 

every crosshead ear-EEG derivative separately. 

Repeated re-labelling process created redundancy in 

labels across epochs (NOISE or a sleep stage). To reduce the 

number of labels per epoch (across crosshead derivatives) to 

one, the rule of majority voting was used – the label of a given 

epoch was chosen as the most popular one across crosshead 

derivatives. In case of several labels being equally popular, 

the first-occurring most voted label was chosen. On average 

11,8% of labels per data set were marked as NOISE 

(excluding invalid crosshead derivatives). Epochs labelled as 

UNKNOWN and NOISE were excluded from the calculation 

of the validation metrics during fine-tuning and test metrics 
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during evaluation of sleep scoring models. Eight nights out of 

122 (6.6%) were considered invalid since either majority of 

recorded ear-EEG signals had poor quality, or majority of 

crosshead ear-EEG derivatives was re-labelled as NOISE. 

Those nights were not used in the further analysis. 

D. Sleep Scoring Model  

1) U-Sleep: A fully convolutional deep learning model U-

Sleep was used as a sleep scoring model [11]. U-Sleep was 

trained on a large pool of PSG recordings representing both 

healthy and pathological populations, ethnicities, biological 

sexes as well as diverse age groups. It showed excellent 

performance, closely matching human expert scorings, across 

data sets. U-Sleep was originally trained using a set of a single 

random scalp-EEG channel (that is EEG signal recorded from 

a pre-defined electrode position) and a single EOG channel, 

both being a part of the clinical PSG setup. Implementation 

details can be found in the Supplementary Material of [11].  

In the manual sleep scoring, EOG is specifically important 

for identifying REM sleep. However, this study focused on 

sleep scoring on ear-EEG, which does not provide a dedicated 

EOG channel. For this reason, we decided to train the U-Sleep 

model as a single channel model based on a randomly selected 

scalp-EEG channel. We used our own pyTorch 

implementation of the U-Sleep pipeline described in [13]. 

 

2) Performance Metric: To evaluate the sleep scoring model 

performance, we used a metric called Cohen’s κ [14]. Cohen’s 

κ measures inter-rater agreement, and accounts for by-change 

agreement. Thus, it is suitable for quantifying the agreement 

between model sleep stage predictions and human expert 

labels [5].  

E. Three Strategies to Adapt Sleep Scoring Models from 

Scalp- to Ear-EEG 

1) Fine-tuning to Left-Right Mastoid: To adapt the model to 

the ear-EEG data without exposing it to the actual data, the U-

Sleep model was fine-tuned to a pool of left-right mastoid 

scalp-EEG derivatives in a subset of the PSG recordings. Two 

conditions were specified to select a satisfactory subset: 1) 

electrodes placed on both right and left mastoids must have 

been included in the PSG electrode setup; 2) there existed a 

common for both mastoids reference in the scalp-EEG. 7570 

out of 19359 available PSG recordings fulfilled the 

requirements. The training pipeline for both the single-

channel-based U-Sleep and fine-tuning to left-right mastoid 

was identical to the one described in [13].  

 

2) Fine-tuning to Ear-EEG: Here, the U-Sleep pre-trained 

on scalp-EEG was fine-tuned to a combined ear-EEG 1 and 2 

data set consisting of a total of 100 nights. We decided to 

leave ear-EEG 3 out of the fine-tuning process due to 1) its 

smaller size with a single night per person; 2) presence of the 

two age groups in this data set. As ear-EEG 1 and 2 but not 

ear-EEG 3 were used for fine-tuning the U-Sleep model, two 

procedures were used to evaluate the sleep scoring 

performance. 

In ear-EEG 1 and 2 sleep scoring performance was 

evaluated through a cross-validation technique. That is, 30 

subject-models were fine-tuned, where the subject under 

evaluation was not seen by the model during training and 

validation. To do that, for each subject-model, the combined 

ear-EEG 1 and 2 data set was divided into a 1) training set 

with 26 randomly selected subjects (78-80 nights per loop), 

2) validation set with 3 subjects selected in a stratified way 

such that 2 are from the larger ear-EEG 1 set and 1 from the 

smaller ear-EEG 2 set (18 nights per loop), 3) test set with a 

single left-out subject (2 or 4 nights). Fine-tuning was 

performed with 50 training + validation iterations for every 

subject-model. A single training iteration consisted of 5 mini-

batches, that is 5 batches consisting of 64 (batch size) 

segments of 35x30s-long sleep epochs, which were obtained 

with a semi-random sampling technique [13]. The number of 

subjects in the validation set and number of mini-batches per 

training epoch were selected based on a grid search. In this 

grid search, training was ran with different numbers of 

subjects in the validation data set {2, 3, 4, 5} and mini-batches 

per training iteration {5, 10, 15, 20}. A pair of optimal 

parameters was selected based on the largest obtained 

validation Cohen’s κ and lowest variability across validation 

subjects. Network architecture and architecture-specific 

parameters were kept identical to the original U-Sleep 

training pipeline, except for the number of input channels 

(single randomly selected crosshead ear-EEG derivative) 

[11],[13]. Sleep scoring performance on the ear-EEG 1 and 2 

data sets was assessed in a testing stage, where test Cohen’s κ 

was calculated for the unseen subject in every best in terms of 

validation Cohen’s κ out of 50 iterations subject-model.  

To assess sleep scoring performance on the ear-EEG 3 data 

set, a U-Sleep model was fine-tuned to a combined ear-EEG 

1 and 2 data set. This time, ear-EEG 1 and 2 data sets were 

divided into training and validation sets (see above), without 

a separate test set, and performed up to 50 training iterations 

with a single split and optimal parameters. The best fine-tuned 

model was selected based on the validation Cohen’s κ with 

the early stopping criterion – 3 consecutive iterations without 

increase in Cohen’s κ by min. 0.01 terminated the fine-tuning. 

Sleep scoring performance on ear-EEG 3 data set was 

assessed after finalizing the fine-tuning process.  

 

3) Ensemble Prediction: Here, multiple crosshead ear-EEG 

derivatives (see section II B) were used to predict sleep stages. 

Figure 1 presents the ensemble prediction. 
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Figure 1.  Scheme of the ensemble prediction as a strategy to adapt sleep 

scoring model from scalp- to the ear-EEG data. 

To start with, every crosshead ear-EEG derivative (12 or 5 

depending on the data set) was passed through the same 

version of the U-Sleep model, independently of each other. 

We then obtained confidence scores for all sleep stages (W, 

N1, N2, N3, REM), across available epochs for each 

crosshead ear-EEG derivative. To obtain an ensemble 

average, confidence scores were averaged within each sleep 

stage, across all valid crosshead ear-EEG derivatives for 

every valid epoch (that is within-derivative-epochs not 

considered invalid, see section II B). Lastly, sleep stage with 

the highest confidence score per epoch was used as a 

prediction. The process of obtaining ensemble prediction 

vector (EP) is summarized in (1). 
 

(1) 

EP is a 1x N-epochs-long vector of sleep stage predictions 

(𝐶𝑖 𝜖 {𝑊, 𝑁1, 𝑁2, 𝑁3, 𝑅𝐸𝑀}). The sleep stage prediction in 

each epoch n was based on the maximum confidence score 

(𝑃(𝑆𝑚𝑛 = 𝐶𝑖)) among the averaged across non-empty 

crosshead ear-EEG derivatives, denoted as 𝑆𝑛. The number of 

non-empty crosshead ear-EEG derivatives denoted as M 

(𝑀 =  𝑆𝑛 ∉ ∅) was dynamically calculated in every epoch. 

F. Statistical Analysis 

1) Linear Mixed Modelling: Linear mixed modelling (LME) 

framework was used to assess the benefits of the three tested 

strategies in isolation and interaction. The advantage of LME 

is that it provides flexibility in including both fixed factors, 

that are factors controlled by the experimental design, and 

random factors, that are factors influencing variance in the 

data not controlled by the design. Furthermore, it can handle 

unbalanced data sets (such as different numbers of nights and 

subjects within a data set) and allows for the analysis of effect 

sizes. LME was implemented with the lme4 package in 

RStudio [15]. To assess the effects of applied strategies in a 

full factorial experimental design, an LME was fitted to test 

Cohen’s κ from the combined ear-EEG 1,2 and 3 data sets. 

(2) 

The first part of the right-hand side equation implies that 

both main and 2- as well as 3-way interactions were 

investigated. The latter implies that a combination of nested 

and cross factors was included. The interindividual and 

repeated measures effects were estimated within data sets 

(nested factors). Age group was added as a non-nested 

random factor, since it related to a single data set. Akaike’s 

Information Criterion and Log Likelihood values were used 

to optimize the model fit, so that it included all relevant 

random factors, reached convergence and did not produce 

singularities in the estimated random effects.  

 

2) Estimated Fixed Effects and Analysis of Contrasts: LME-

ANOVA was used to address the hypotheses, that is to test for 

main and interaction effects in the fitted LME model. Then, a 

contrast analysis was performed on the estimated marginal 

means to better understand the direction and size of effects 

with the ‘emmeans’ package in RStudio [16]. Specifically, 

pairwise t-tests were performed to identify the magnitude of 

performance improvement due to the applied strategies. In 

addition, the effect sizes of pairwise comparisons were 

investigated to understand the scale of the improvements 

based on the estimated confidence intervals [17]. The effect 

sizes were calculated with Cohen’s d. Pairwise comparisons 

were performed on each contrast within a fixed factor with the 

two other factors frozen. More specifically, the following 

contrasts were tested: FTLRmastoid: Yes vs. No, Ensemble: Yes 

vs. No, and FTear-EEG: Yes vs. No. 

III. RESULTS 

A. Cohen’s κ Across Tested Conditions 

Fig. 2 shows κ medians and interquartile ranges across 

tested conditions. Labels indicate which strategy has been 

applied to adapt the scalp-EEG-based U-Sleep to ear-EEG 

model. Descriptive statistics on raw test Cohen’s κ are 

summarized in Table II. Best performance for ear-EEG 1 data 

set was observed with the U-Sleep fine-tuned to ear-EEG 

using an ensemble of crosshead ear-EEG derivatives for 

predictions (FTear-EEG & Ensemble,  = 0.81, sd = 0.06 and η 

= 0.83, IQR = 0.06). In ear-EEG 2&3, a combination of all 

three adaptations yielded the best performance (FTLRmastoid & 

FTear-EEG & Ensemble; ear-EEG data set 2  = 0.73, sd = 0.12; 

ear-EEG 3  = 0.64, sd = 0.14 and η = 0.68, IQR = 0.18). 

 

Figure 2.  The benefits of strategies for adapting sleep scoring model from 
scalp- to the ear-EEG data. Median η of model performance Cohen’s κ across 

tested conditions. Labels represent the applied strategies. Black dots 

represent nights outside of the 1.5*IQR. FT – Fine-tuning. FTLRmastoid 
adaptation: U-Sleep pre-trained on LRmastoid scalp-EEG derivative; 

Ensemble adaptation: an ensemble of crosshead ear-EEG derivatives used to 

predict sleep stages; FTear-EEG adaptation: U-Sleep fine-tuned to the ear-EEG 

data.  
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Lowest median sleep scoring performance was observed 

for the not adapted U-Sleep applied to ear-EEG data (1) Not 

adapted, ear-EEG 1 η = 0.71, IQR = 0.08; ear-EEG 2 η = 0.67, 

IQR = 0.15; ear-EEG 3 η = 0.57, IQR = 0.24). To assess the 

benefits of applied strategies independent of the non-

controllable noise sources, differences in sleep scoring 

performance were analyzed with Linear Mixed Models. 

TABLE II.  DESCRIPTIVE STATISTICS ON RAW Κ ACROSS CONDITIONS. 

Condition Ear-EEG Mean  (sd) Median η (IQR) 

Not adapted  

1 0.70 (0.06) 0.71 (0.08) 

2 0.63 (0.14) 0.67 (0.15) 

3 0.53 (0.15) 0.57 (0.24) 

Fine-tuningLRmastoid 

1 0.76 (0.05) 0.76 (0.06) 

2 0.67 (0.12) 0.70 (0.25) 

3 0.60 (0.14) 0.61 (0.22) 

Ensemble 

1 0.74 (0.06) 0.74 (0.08) 

2 0.67 (0.11) 0.70 (0.12) 

3 0.58 (0.13) 0.61 (0.21) 

FTear-EEG 

1 0.81 (0.06) 0.82 (0.05) 

2 0.72 (0.16) 0.77 (0.13) 

3 0.60 (0.14) 0.64 (0.17) 

FTLRmastoid & Ensemble 

1 0.79 (0.05) 0.79 (0.06) 

2 0.72 (0.10) 0.74 (0.13) 

3 0.63 (0.13) 0.65 (0.17) 

Ensemble & FTear-EEG 

1 0.81 (0.06) 0.83 (0.06) 

2 0.73 (0.13) 0.76 (0.11) 

3 0.63 (0.13) 0.67 (0.12) 

FTLRmastoid & FTear-EEG 

1 0.80 (0.05) 0.80 (0.05) 

2 0.71 (0.15) 0.76 (0.14) 

3 0.62 (0.14) 0.65 (0.26) 

FTLRmastoid & Ensemble &  

FTear-EEG 

1 0.81 (0.05) 0.82 (0.05) 

2 0.73 (0.12) 0.76 (0.14) 

3 0.64 (0.14) 0.68 (0.18) 

Condition: FT: Fine-tuning. LRmastoid: U-Sleep pre-trained on LRmastoid scalp-EEG derivative; 

Ensemble: an ensemble of crosshead ear-EEG derivatives used to predict sleep stages; ear-EEG: U-

Sleep fine-tuned to the ear-EEG data 

Numbers in bold indicate the best obtained sleep scoring performance per data set. 

B. Random Effects of the Linear Mixed Model 

Fitted full-factorial model explained 6.6% of marginal 

variance and 89% of conditional variance in the data (R2). The 

estimated random effects, that is variance explained by 

random factors, were as follows: σ2
subject:data_set = 0.01, sd = 

0.1, σ2
age_group = 0.006, sd = 0.08, σ2

night:data_set = 0.00, sd = 0.02. 

Residual, unexplained variance was estimated as σ2
 = 0.002, 

sd = 0.05.  

C. Mean and Interaction Effects 

To address the hypotheses of the study, LME-ANOVA 

was performed on the estimated fixed effects. Table III shows 

results of this test. As hypothesized, all strategies to adapt the 

sleep scoring model to ear-EEG improved its performance in 

isolation (FTLRmastoid: F(1, 881.64) = 77.56, p < 0.001; Ensemble: 

F(1, 881.64) = 48.14, p < 0.001; FTear-EEG: F(1, 881.64) = 319.89, p < 

0.001). Furthermore, the LME-ANOVA test revealed an 

interaction effect FTLRmastoid x FTear-EEG (F(1, 881.64) = 82.76, p < 

0.001) and Ensemble x FTear-EEG (F(1, 881.64) = 12.58, p < 0.001). 

To be able to rank the applied strategies by their impact, a 

pairwise comparisons’ analysis of the estimated marginal 

means was performed, and Cohen’s d effect sizes were 

calculated. 

TABLE III.  MAIN AND INTERACTION EFFECTS OF THE ASSESSED 

STRATEGIES THE SLEEP SCORING MODEL’S PERFORMANCE ON THE EAR-EEG 

DATA. 

 Sum of 

Squares 
F(df), p-value 

FTLRmastoid 0.167 F(1, 881.64) = 77.56, p < 0.001 

Ensemble 0.104 F(1, 881.64) = 48.14, p < 0.001 

FTear-EEG 0.69 F(1, 881.64) = 319.89, p < 0.001 

FTLRmastoid & Ensemble 0.00 F(1, 881.64) = 0.02, p = 0.89 

FTLRmastoid & FTear-EEG 0.178 F(1, 881.64) = 82.76, p < 0.001 

Ensemble & FTear-EEG 0.027 F(1, 881.64) = 12.58, p < 0.001 

FTLRmastoid & FTear-EEG & 
Ensemble 

0.002 F(1, 881.64) = 0.92, p = 0.34 

D. Estimated Marginal Means and Pairwise Comparisons 

Table IV shows the result of pairwise comparisons on the 

estimated marginal means. Fine-tuning U-Sleep model to the 

crosshead ear-EEG data significantly improved the sleep 

scoring performance in all tested pairwise comparisons (9) Δ 

0.096, p < 0.001; 10) Δ 0.035, p < 0.001; 11) Δ 0.068, p < 

0.001; 12) Δ 0.019, p < 0.001). The benefit of fine-tuning U-

Sleep to the left-right mastoid scalp-EEG data was observed 

in absence of fine-tuning to crosshead ear-EEG (1) Δ 0.058, p 

< 0.001; 2) Δ 0.035, p < 0.001). Similarly, a benefit to sleep 

scoring performance was observed with the ensemble 

prediction (5) Δ 0.035, p < 0.001; 6) Δ 0.029, p < 0.001).  

 In terms of Cohen’s d effect sizes, the largest improvement 

in sleep scoring performance was observed when fine-tuning 

U-Sleep to ear-EEG in isolation (9) d = 2.06, CL = [1.78, 

2.33]). Very large (1.3 <) or large (0.8-1.3)  improvement to 

sleep scoring performance in terms of effect size [13] was also 

observed for fine-tuning U-Sleep to crosshead ear-EEG in 

combination with ensemble prediction (11) d = 1.47, CL = 

[1.2, 1.74]) and fine-tuning to left-right mastoid scalp-EEG 

without ensemble (1) d = 1.24, CL = [0.98, 1.51] as well as 

with ensemble (2) d = 1.1, CL = [0.84, 1.36]). Ensemble 

prediction had a moderate improvement of sleep scoring 

performance yet only in absence of fine-tuning to ear-EEG (5) 

d = 0.76, CL = [0.5, 1.02]; d = 0.61, CL = [0.35, 0.87]).  

TABLE IV.  PAIRWISE COMPARISONS – CONTRASTS ADJUSTED FOR 

MULTIPLE COMPARISONS AND COHEN’S D EFFECT SIZES 

Frozen Factors 

(Conditions)a 

Statistics 

Contrast 

Estimated 

Marginal 

Differenceb 

Effect size  

(Cohen’s d)c 

Ensemble = No 

FTear-EEG = No 

1) FTLRmastoid:  

Yes – No  

Δ 0.058,  

t(889) = 9.46,  

p < 0.001 

d = 1.24, 

CL = [0.98, 1.51] 

Ensemble = Yes 

FTear-EEG = No 

2) FTLRmastoid:  

Yes – No 

Δ 0.051,  

t(889) = 8.37,  

p < 0.001 

d = 1.1, 

CL = [0.84, 1.36] 

Ensemble = No 

FTear-EEG = Yes 

3) FTLRmastoid:  

Yes – No 

Δ -0.003,  

t(889) = -0.55,  

p = n. s. 

d = -0.07, 

CL = [-0.33, 0.19] 

Ensemble = Yes 
FTear-EEG = Yes 

4) FTLRmastoid:  
Yes – No 

Δ 0.001,  

t(889) = -0.26,  
p = n. s. 

d = 0.03, 
CL = [-0.22, 0.29] 

FTLRmastoid = No 

FTear-EEG = No 

5) Ensemble:  

Yes – No 

Δ 0.035,  

t(889) = 5.77,  

p < 0.001 

d = 0.76, 

CL = [0.5, 1.02] 
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Frozen Factors 

(Conditions)a 

Statistics 

Contrast 

Estimated 

Marginal 

Differenceb 

Effect size  

(Cohen’s d)c 

FTLRmastoid = Yes 

FTear-EEG = No 

6) Ensemble:  

Yes – No 

Δ 0.029,  

t(889) = 4.68,  

p < 0.001 

d = 0.61, 

CL = [0.35, 0.87] 

FTLRmastoid = No 

FTear-EEG = Yes 

7) Ensemble:  

Yes – No 

Δ 0.007,  

t(889) = 1.28,  

p = n. s. 

d = 0.17, 

CL = [-0.09, 0.43] 

FTLRmastoid = Yes 

FTear-EEG = Yes 

8) Ensemble:  

Yes – No 

Δ 0.013,  

t(889) = 2.1,  

p = n. s. 

d = 0.28, 

CL = [0.02, 0.53] 

FTLRmastoid = No  

Ensemble = No 

9) FTear-EEG:  

Yes - No 

Δ 0.096,  

t(889) = 15.68,  

p < 0.001 

d = 2.06, 

CL = [1.78, 2.33] 

FTLRmastoid = Yes 

Ensemble = No 

10) FTear-EEG:  

Yes – No 

Δ 0.035,  

t(889) = 5.67,  

p < 0.001 

d = 0.74, 

CL = [0.48, 1.00] 

FTLRmastoid = No  

Ensemble = Yes 

11) FTear-EEG:  

Yes – No 

Δ 0.068,  

t(889) = 11.19,  

p < 0.001 

d = 1.47, 

CL = [1.2, 1.74] 

FTLRmastoid = Yes 

Ensemble = Yes 

12) FTear-EEG:  

Yes - No 

Δ 0.019,  

t(889) = 3.09,  
p = 0.02 

d = 0.41, 

CL = [0.15, 0.66] 

aConditions: FT – Fine-tuning. LRmastoid: U-Sleep pre-trained on LRmastoid scalp-EEG derivative; 

Ensemble: an ensemble of crosshead ear-EEG derivatives used to predict sleep stages; ear-

EEG: U-Sleep fine-tuned to the ear-EEG data 
bSignificance threshold p = 0.05, significant differences in bold 

c0.2-0.5 small; 0.5-0.8 medium; 0.8-1.3 large; 1.3 < very large effect size 

IV. DISCUSSION 

This study aimed to investigate strategies for adapting 

sleep scoring models from scalp- to ear-EEG data. We 

investigated the main and interaction effects of utilizing three 

strategies: 1) fine-tuning of the sleep scoring model to left-right 

mastoid scalp-EEG, 2) fine-tuning of the sleep scoring model 

to crosshead ear-EEG and 3) ensemble prediction. The results 

showed that all three strategies in isolation improved the sleep 

scoring model performance on ear-EEG data relative to the not 

adapted model. Fine-tuning the sleep scoring model to ear-

EEG data was found especially beneficial in terms of effect 

size.  Combining fine-tuning to ear-EEG and ensemble 

prediction (and sometimes fine-tuning to left-right mastoid 

scalp-EEG derivative) showed largest improvement to sleep 

scoring performance (uncorrected for inter- and intra- 

differences).    

A. The Benefits of Strategies to Adapt Sleep Scoring Models 

on Their Performance 

Both Cohen’s κ and statistical analyses show that it is 

advantageous to adapt sleep scoring models from scalp- 

(PSG) to ear-EEG data. Furthermore, it seems that choosing 

the right strategy matters for the results. In this study we found 

that fine-tuning the U-Sleep model to the ear-EEG data yields 

generally the largest improvement. Since some sleep patterns 

may be represented differently at the scalp domain as 

compared to the ear domain, this result was expected. 

Interestingly, fine-tuning a sleep scoring model to left-

right mastoid scalp-EEG derivative has almost as large 

positive effect on the performance as fine-tuning it directly to 

ear-EEG (in terms of the effect size). This result aligns with 

the literature [6] and demonstrates that the left-right mastoid 

derivative obtained from scalp-EEG and the crosshead 

derivative obtained from ear-EEG reflect similar cortical 

activity. 

To our surprise, ensemble prediction was found less 

effective than the other two strategies applied in isolation 

(only a moderate benefit on sleep scoring performance was 

observed). However, a combination of ensemble prediction 

and the fine-tuning approaches showed largest benefits to 

sleep scoring performance across data sets. While the 

ensemble prediction may not be needed all the time, it may be 

an effective way to clean the data and to increase robustness 

of the scoring. For example, ensemble prediction could be 

used as a dynamic quality-based re-weighting of the 

crosshead ear-EEG derivatives to predict sleep stages 

exclusively from the good quality data. More work is needed 

to define the optimal method for such a quality-based re-

weighting. 

B. Limitations  

In the current study, we decided to evaluate the benefits of 

applied strategies to adapt sleep scoring from scalp- to ear-

EEG by means of a model performance across harmonized 

data sets. Despite of a systematic harmonization of the data 

sets, some differences could have contributed to the results in 

an unaccounted way. For example, ear-EEG 2 and 3 were 

smaller in size (number of subjects and nights per subject) 

than ear-EEG 1. Furthermore, instrumentation and 

measurement setups as well as the number of recorded nights 

per subject varied across data sets. Finally, subject 

characteristics differed across data sets. Thus, we suggest that 

a search of optimal strategy should be extended with larger 

and more diversified ear-EEG data sets in the future.  

V. CONCLUSIONS 

This study shows that adapting a sleep scoring model from 

crosshead scalp- to ear-EEG data improves performance. A 

combination of fine-tuning a sleep scoring model to ear-EEG 

and predictions based on the ensemble of crosshead ear-EEG 

derivatives was found to be the most effective strategy.  
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