EEG data alignment across devices using a neural network
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Abstract— Aligning (or ‘synchronizing’) recordings from
multiple biomedical devices is essential for accurate data analy-
sis, but can be challenging in reality. Traditional methods, such
as trigger-based synchronization or manual artifact alignment,
are not always practical or reliable. In this study, we propose a
neural network-based approach, to estimate the temporal offset
between recordings without assuming morphological similari-
ties. We evaluate the model on three electroencephalography
(EEG) datasets: EESM17, EESM19 and Surrey-cEEGrid, each
featuring different hardware setups and alignment challenges.
Trained on EESM19, where perfect synchronization is available,
the model generalizes well to new devices and noisy data.
Our results show that this method outperforms artifact-based
benchmarks and provides robust alignment. Our approach
offers a promising solution for post hoc synchronization of
complex biomedical data.

I. INTRODUCTION

In many studies within biomedical engineering, multiple
recording devices are used to monitor the same person. This
usually results in a need to synchronize the recordings from
the different devices. The need is increased by differences in
startup-time between equipment and different device clock
rates [1], meaning that high synchronization is hard to
achieve simply by ’starting the recordings at the same time’.

In this study, ‘alignment’ and ‘synchronization’ will be
used interchangeably.

A straightforward ‘hardware’ solution is simply to feed a
trigger signal to each device; alternatively, one can simply
induce simultaneous recording artifacts in all devices, which
can then be found and hand-aligned during data analysis.
In our experience, these approaches may sometimes fail or
be unavailable — not all devices have trigger ports, and
human error can cause artifact induction to fail. In such cases,
methods for post hoc alignment of the datasets are needed.

The literature contains other proposed solutions to the
synchronization problem, such as aligning outliers using
cross correlation[2], time warping[3]-[5] and Gaussian pro-
cesses[6]. However, many of these methods assume some
extent of morphological similarities between the devices, or
may be a bit too ‘hand-held’. In this study, we investigate
a more data-driven approach, wherein a neural network is
trained to determine the correct lag between recordings.
As such, our approach, explained in the 'methods’ section,
makes next to no assumptions regarding the relationship
between data sets.

In this study, we specifically focus on long EEG recordings
from sleep studies, because this is a particular domain
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where recording alignment can become an issue. Due to the
nature of EEG, morphological similarity between the signals
can not be assumed. Since we are focusing specifically on
EEG recordings, we leverage the ability to compare similar
derivations between recording devices. However, as will be
seen, we also test how the method generalizes beyond this
restriction.

Concretely, we focus on synchronizing polysomnography
(PSG) recordings [7] with various mobile EEG data; more
details can be found in the 'Data’ subsection.

II. METHODS

As mentioned in the introduction, we investigate a data-
driven machine learning based approach. This means feeding
preprocessed data to a model (see Figure [I)) and teaching it
to determine whether the two data streams in question are
aligned or not. By trying different offsets, the model can be
used to determine what the correct offset should be.

A. Data

We train and test our approach using 3 different sleep data
sets, varying the complexity and realism gradually:

1) EESM19: We trained the model using the 80 record-
ings with combined wearable EEG (‘ear-EEG’) and PSG
recordings presented in Mikkelsen et al 2019 [8], [9]. This
is a very suitable dataset for this task, because the wearable
and PSG electrodes are combined into a single device,
meaning that a ground truth is always available - the data
is perfectly aligned to begin with. To mimic reality, the
electrodes from each device are put into separate groups and
average referenced, creating two independent groups of EEG
channels.

In a realistic setting, researchers would likely be seeking
to align derivations that have similar geometries. For this
dataset, we represent the PSG device by the M1 — M2 deriva-
tion, and the ear-EEG by the average of the left channels
vs. the right channels: ((ELE,ELI,ELT,ELA,ELB,ELC]) —
([ERE,ERI,ERT,ERA,ERB,ERC]).

2) EESMI17: A smaller data set from the same re-
search group, presented in Mikkelsen et al 2017 [10],
[11], the primary usefulness from this dataset is the fact
that the recordings were made using completely differ-
ent equipment from EESM19, meaning that we can test
out-of-domain model performance. Additionally, the re-
searchers also used a shared-amplifier setup, meaning that
a ground truth is available. For this data set, the ’left-
right’ derivations were used again, meaning that the PSG
device is represented by the A1 —A2 derivation and the ear-
EEG device by ([ELA,ELE,ELI,ELB1,ELB,ELG,ELK]) —
([ERA,ERE ,ERI,ERB1,ERB,ERG,ERK]).



The original data set is 9 subjects, however, on initial
inspection, one subject was found to be so noisy that it was
skipped for this analysis. This rejection was done prior to
running any analysis.

3) Surrey-cEEGrid: Medium-sized dataset with 20
recordings done with yet another hardware setup (’cEE-
Grid’), presented in Mikkelsen et al 2019[2], [12]. This is the
most realistic and challenging of the three datasets, because
no ground truth is available.

Besides the preprocessing mentioned below, for this
dataset, we also applied a 62 Hz notch filter, removing an
artifact specific to this data set.

For this dataset, the PSG was represented by
6  derivations: F3-M2, C3-M2, OI1-M2, F4-Ml,
C4-M1 and O2-M1, and the wearable EEG was

represented by ([L1,L2,13,14 [4A LAB,L5,1L6,L7,L8]) —
([R1,R2,R3,R4,R4A,R4B,R5,R6,R7,R8]). For  some
recordings, some cEEGrid channels were missing, and were
simply ignored.

For this dataset, the ‘spatial ensembling’, described below,
was used to find the optimal offset.

In all three datasets, as an initial preprocessing step, we
made sure to set all NaN-values to 0.

B. Model

The model architecture is presented in Figure The
input is two vectors (‘A’ and ‘B’), which may or may not
have an offset relative to each other. The first step in the
model reduces the dimensionality of the input data, using a
convolutional layer with a kernel size of 64 and a stride of 16.
This is then followed by a max pooling layer with a kernel
size of 4. This results in both input vectors being roughly
16 times shorter, and helps extracting important features in
the data. Next, the two resulting vectors are stacked and fed
to a Gated Recurrent Unit (GRU)[13], which functions as
an encoding layer, outputting a hidden state. This is passed
through three fully connected layers of sizes 128, 128 and 64,
with ReLU activations between them. The output layer is of
size 1 and uses a sigmoid activation function. This results in
a single output value between 0 and 1, which represents the
estimated probability that the two input vectors are aligned.

C. Preprocessing

Prior to feeding the data into the model, it is pre-processed
in the following manner:

1) Apply a high-pass filter using a FIR filter of length 33
seconds with a lower passband edge at 0.10 Hz and a
transition bandwidth of 0.10 Hz.

2) Downsample the data to 200 Hz (if necessary). This
was done using the ‘resample’ function from the MNE
library.

3) Standardize to have zero mean and unit variance for
each 15-minute window.

4) If the two time series are of different lengths, pad the
shorter time series with zeros.
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Fig. 1. Model architecture. The blue rectangle represents the input vector A
and the orange rectangle represents the other input vector B. "FC” denotes
a fully connected layer.

D. Model training

During training, the model is fed 15-minute data bites
(180 000 samples sampled at 200 Hz) from both de-
vices/recordings. The training process involves a mixture of
aligned and artificially misaligned (‘positive’ and ‘negative’)
examples, which the model must learn to differentiate. This
setup shares similarities with simple implementations of con-
trastive learning [14], as it involves comparing pairs of inputs
to learn a meaningful distinction. However, unlike typical
contrastive learning approaches, the objective here is not
to learn a general-purpose data representation. Instead, the
classification task of determining alignment is the end goal
itself, and the model is explicitly trained using supervised
labels and binary cross-entropy loss.

Samples are always drawn from EESMI19, for which
perfect alignment is possible. For unaligned samples, an
offset between 10 and 300 seconds is added between the
two devices. To increase the robustness of the final model, a
small offset between 0 and 0.5 seconds is used for ‘aligned’
examples, since we found that the model would otherwise
be too prone to incorrectly assign the ’unaligned’ label in
real-world testing.

The model was trained using cross-entropy loss and the
Adam optimizer with parameters (f1,2) = (0.9,0.999), as
well as a batch size of 512 and a learning rate of 0.002.

E. Evaluation

1) Search algorithm: To realistically evaluate the trained
model, we must use it to actually align time series. This
means devising a search algorithm that efficiently detects
the region in offset-space containing the correct lag, thereby
achieving automatic alignment.

We have chosen a simple, batched algorithm that works
without gradient information:

(a) Try K different offsets, {d/};(:l in a large window
centered around 0.



(b) For each offset, j, get the mean of the estimated
probabilities of alignment, averaged across s segments
with that offset: p; = %Zf.:l vi, y; being individual
model outputs. Generate weights based on the averaged
probabilities: w; = e0U-pj),

(c) Use the weights to estimate the most likely offset, D =
L wid;

Z_I/<:1 wi

(d) Zoom into a smaller window centered around D.

(e) Repeat, decreasing the window size each time.

In our implementation, K = 2500,0 = 150, s =
recording duration/15 minutes. A sequence of four window
sizes (defining the search spaces) were used: 20 minutes, 10
minutes, 1 minute, and 10 seconds.

2) Model confidence: After the last zoom, the model is
evaluated at D (for which the average model output is not
otherwise known). The average output is interpreted as the
model’s ‘confidence’ in the alignment.

3) Spatial ensembling: In the Surrey-cEEGrid dataset, a
‘left-right’ derivation is not available for the PSG recording.
Instead, we estimate the correct lag for multiple derivations
(all compared to the left-right cEEGrid derivation) and then
choose the lag with the highest confidence.

FE. Benchmark

As a realistic alternative approach, we use the ‘artifact
alignment’ approach outlined in Mikkelsen et al 2019[2]:
Artifacts are identified in each recording as those points in
time where the signal amplitude exceeds a certain threshold
(In practice, 2 standard deviations is used). By storing the
artifact locations in binary vectors, i.e., an element is 1 if it
contains an artifact and otherwise 0, the two recordings can
be aligned by finding the highest cross-correlation between
the two binary vectors. This corresponds to aligning the
recordings by aligning their artifacts.

To be as realistic as possible, we only consider offsets
of +/- 1 hour, since it seems unlikely to be performing
recordings with less timing knowledge than that. In the case
of the Surrey-cEEGrid dataset for which multiple derivations
are used, the peak cross correlation was used as ‘confidence’.

III. RESULTS

Figure [2] shows an example run of the algorithm using a
recording from the test split in Surrey-cEEGrid. The black
dots each represent the output from a single run of the model
(so, the estimated probability of alignment based on a single
15-minute section). The red line is is p; as defined above,
and the vertical line indicates estimated best offset.

Figure [3] shows an overview of the distribution of align-
ment errors for all three datasets, using both our approach
and the benchmark method. Focusing on EESM17 and
EESM19, we see that our model reliably performs cor-
rect alignment, whereas the benchmark method occasionally
stumbles. Moving on to the Surrey-cEEGrid dataset, quan-
tifying errors is a bit more challenging, since there is no
ground truth. The authors of the dataset have proposed a
manual synchronization, obtained via a procedure similar to

Estimated probability of alignment

for 15-minute section
1.0 1 8 &

® oog® —— Mean of 15-minute sections at offset
. 4 | Offset estimate D

Classifier output

T T T T
-500 -250 0 250 500
Offset (seconds)

Fig. 2. Example of the output from the first iteration of the algorithm. The
red line shows the average classifier output for a given lag, and we see that
the model has a quite high confidence for an offset of about -260 seconds.
As described above, the algorithm can be rerun with a smaller field of view
to increase the resolution.

our benchmark method. Out of 17 recordings, our method
agrees with the manual alignment in 12 cases (in this case,
agreement” means a difference less than 5 seconds). Upon
closer inspection of the remaining 5 recordings, we actually
believe that our approach gives a more convincing alignment
than that suggested by the authors in 4 cases. Figure [ shows
an example of manual and automatic alignment. We see that
the motion artifacts for this 30-minute segment align better
using the proposed offset based on our automatic alignment.
In the remaining recording, we concede that the manual
alignment is more convincing, meaning that our approach
gives an error of 23 seconds.

IV. DISCUSSION AND CONCLUSION

We consider the results very promising. The Surrey-
cEEGrid data set is the most challenging, but it is also an
overall hard dataset to work with (there are many recording
artifacts), and we are missing a reliable ground truth. Apart
from these problematic examples, our approach is reliable
and outperforms the benchmark method.

A. Future directions

While the present model largely ‘gets the job done’, there
are multiple interesting directions to take the work further:

How dissimilar can the EEG sources be before the ap-
proach breaks down? And what if we were even comparing
dissimilar modalities, such as EEG and actigraphy?

Can we learn what the network is basing its decisions
on? We went into the project expecting a high reliance
on movement artifacts, but the model also manages correct
decisions for data sequences without any artifacts.

Along these lines, we have not yet implemented a flag for
‘indecisiveness’ in the model output, i.e., how to know when
not to trust the output. We expect something simple like the
area under the curve in Figure 2] might be a good first start,
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Fig. 3. Distributions of alignment errors for our proposed model and the benchmark method. A: full picture, with outliers all the way up to 3500 seconds.
B: zoomed in to show the main distribution. Largest error for the model is 23 seconds, 5 values are above 5 seconds.
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Fig. 4. Comparison of manual and proposed automatic alignment. Vertical lines added as visual guide. Comparing the alignment of artifacts between the
two proposed alignments, we see a better match to the bottom plot, indicating a better synchronization / alignment.

but at the time of writing we have not had the chance to
investigate further.

Finally, it seems likely that for optimal performance, the
model should incorporate time-varying offsets. This would
allow handling situations where the devices have markedly
different clock rates, or where one device is dropping sam-
ples, for instance.

V. CODE AVAILABILITY

We have packaged our work here, both the final

product and the components needed to perform
local development, in a GitLab repository, available
at https://gitlab.au.dk/tech_ear-eeg/

sleep—-code/signal—alignment.
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