Bang&Olufsen

VOLTMETER RV9A

INDHOLD

Tekniske data																				2
Introduktion																				4
Anvendelse .																				4
Virkemåde .																				8
Justering																				11
Stykliste																				13
Diagram/Kom	p	0	ne	er	ıt	p]	a	ce	er	in	g									18
Garanti og ser	vi	C	e																	24

TEKNISKE DATA

AC-VOLTMETER: Middelværdi-målende, kalibreret i

sinus-effektivværdi.

Spændingsområde: $100 \mu V - 316 V i 12 \text{ områder med fuldt}$

udslag for: 1 mV, 3,16 mV, 10 mV, 31,6 mV, 100 mV, 316 mV, 1 V, 3,16 V,

10 V, 31,6 V, 100 V og 316 V.

dB-område (0 dB = 1 V): $\div 80$ dB til +50 dB i 12 områder.

Områdeforøgelse: +1,5 dB.

Skalaer: $0 - 12, 0 - 37 \text{ og } \div 20 - +1,5 \text{ (dB)}$.

Nøjagtighed ved 1 KHz, incl. ± 10% ændring af

netspændingen: ± 0,1 dB ved fuldt udslag ("0 dB").

Frekvenskarakteristik

(ref. 1 KHz): $10 \text{ Hz} \dots 1 \text{MHz} \pm 0.2 \text{ dB}$

 $10 \text{ Hz} \dots 3\text{MHz} \pm 0.5 \text{ dB}$ $10 \text{ Hz} \dots 10\text{MHz} \pm 1 \text{ dB}$

Temp. koefficient: $< 0.01 \text{ dB/}^{\circ}\text{C}$.

Indgangsimpedans: $1 \text{ M}\Omega // 32 \text{ pF i områderne } 1 \text{ mV} - 316 \text{ mV}.$

 $1~\text{M}\Omega\text{//}~18~\text{pF}$ i områderne 1~V-316~V.

Støj (ref. til indgang): $< 15 \mu V$ ved kortsluttet indgang.

 $< 30 \,\mu\text{V} \text{ ved } 10 \,\text{K}\Omega \text{ tilslutning simpedans.}$

 $Overspændingsbeskyttelse: \\ Max.\ 700\ V\ AC\ og\ 400\ V\ DC\ i\ alle\ områder.$

MÅLEFORSTÆRKER:

Forstærkning: ÷50 dB ... +60 dB i 12 trin: ÷50 dB,

÷40 dB, ÷30 dB, ÷20 dB, ÷10 dB, 0 dB, +10 dB, +20 dB, +30 dB, +40 dB, +50 dB

og +60 dB.

Nøjagtighed ved 1 KHz, incl. ± 10% ændring af

netspændingen: $\pm 0.3 \text{ dB}$.

Frekvenskarakteristik (ref. 1 KHz): 5 Hz ... 9 MHz ± 1 dB.

 $3 \text{ Hz} \dots 10 \text{ MHz} \pm 3 \text{ dB}.$

Temp. koefficient: $< 0.01 \text{ dB/}^{\circ}\text{C}$.

Indgangsimpedans: $1 \text{ M}\Omega// 18 \text{ pF i stilling } \div 50 \text{ dB} \dots 0 \text{ dB}.$

 $1 \text{ M}\Omega // 32 \text{ pF i stilling} + 10 \text{ dB} ... + 60 \text{ dB}.$

Udgangsspænding: Max. 1,15 V_{eff.} (1,6 V_{peak}).

Udgangsimpedans: 75 α .

Lavpasfilter (÷3 dB): 10 MHz, 1 MHz og 0,1 MHz.

Støj ved indgangsimpedans

 $\leq 10 \text{ K}\Omega$ (ref. til udgang):

Harm. forvrængning ved 1 KHz:

< 40 mV ved f_{o} = 10 MHz < 30 mV ved f_{o} = 1 MHz < 10 mV ved f_{o} = 0,1 MHz

< 10 mv ve

< 0,8% 2. harm. < 0,3% 3. harm.

MONITORUDGANG:

Udgangsspænding:

1 V ±0,3 dB ved fuldt udslag ("0 dB")

i alle områder.

Frekvenskarakteristik:

5 Hz ... 9 MHz ± 1 dB 3 Hz ... 10 MHz ± 3 dB.

Harm. forvrængning ved 1 KHz:

< 0,8% 2. harm. < 0,3% 3. harm.

Udgangsimpedans:

 75Ω .

Lavpasfilter (÷3 dB):

10 MHz, 1 MHz og 0,1 MHz.

Støj ved indgangsimpedans < 10 K Ω

(ref. til udgang):

< 40 mV ved f_{\emptyset} = 10 MHz < 30 mV ved f_{\emptyset} = 1 MHz < 10 mV ved f_{\emptyset} = 0,1 KHz

OMRÅDEOMSKIFTNING:

Automatisk:

Instrumentet skifter automatisk område, indtil udslaget ligger mellem ÷10 dB og +1,5 dB på instrumentets dB-skala. Skiftetid max. 3 sek.

Manuelt:

Med knappen 'MAN' indtrykket skiftes til højere eller lavere område ved betjening af h.h.v. "UP" – eller "DOWN"-knappen.

FJERNBETJENING (REMOTE):

Samtlige funktioner og områder kan fjernbetjenes via "DATA IN/OUT" – multistikket (ekstra tilbehør) på bagsiden af instrumentet.

DATA-UDGANG:

Via "DATA IN/OUT" — multistikket (ekstra tilbehør) på bagsiden af instrumentet fås informationer om meterudslag og område.

NETTILSLUTNING:

110 V~, 130 V~, 220 V~ eller 240 V~ \pm 10%

50-400 Hz.

Forbrug:

Ca. 10W.

TEMP.OMRÅDE:

5 ... 40°C.

DIMENSIONER (kabinet):

Bredde: 163 mm Dybde: 210 mm

Højde: 160 mm.

VÆGT:

3 kg. (6,6 lbs.).

OVERFLADE FINISH:

Sølvgrå og blå emaljelak.

TILBEHØR:

1 instruktionsbog

1 kabel BNC/2 x banan.

Ret til ændringer forbeholdes.

INTRODUKTION

B&O Voltmeter RV9A er et avanceret LF-millivoltmeter til måling af vekselspændinger fra 100 μ V til 370V inden for frekvensområdet 10 Hz ... 10 MHz. Instrumentet måler middelværdien af det tilførte signal, medens skalaen er kalibreret i sunus-effektivværdi. RV9A adskiller sig fra et normalt millivoltmeter ved at det selv automatisk skifter område, således at viseren altid vil befinde sig mellem 1/3 og fuldt udslag. Det valgte område markeres tydeligt på en lystavle samtidig med, at den tilhørende skala-gradering markeres med lysdioder.

Instrumentet kan endvidere anvendes som måleforstærker med en forstærkning fra ÷50 dB til +60 dB i 10 dB trin inden for samme frekvensområde.

ANVENDELSE

Voltmeter RV9A er fra fabriken monteret for 220 V $\pm 10\%$ netspænding, men kan let ændres til 110 V $\pm 10\%$, 130 V $\pm 10\%$ eller 240 V $\pm 10\%$ ved omlodning af ledningsforbindelserne til nettransformeren. (Fig. 1). Ved 110 V og 130 V ændres netsikringen til 200 mA træg sikring.

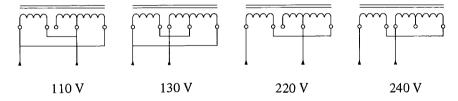


Fig. 1. Ændring til 110 V, 130 V eller 240 V netspænding.

Netstikproppen er beregnet for en speciel type stikkontakt med beskyttelsesjord ("schuko"), men kan udmærket tilsluttes en almindelig stikkontakt. Dette medfører dog, at kabinettet bliver "svævende".

Såfremt voltmeteret er tilsluttet beskyttelsesjord, kan kabinettet og dermed indgangens stel afbrydes fra denne med omskifteren "Floating/Chassis" (12). Dette kan især være påkrævet ved uønskede "brumsløjfer".

Betjeningen af instrumentet fremgår i store træk af det følgende samt fig. 2 og 3.

- 1. Skalaindikering. De to lysdioder lyser op een af gangen og viser hvilken skala, der skal aflæses.
- 2. Netafbryder.
- 3. Automatisk områdeskift.
- 4. Manuelt områdeskift.
- 5. Op i område ved manuelt områdeskift. For hvert tryk på knappen gøres området 10 dB større.

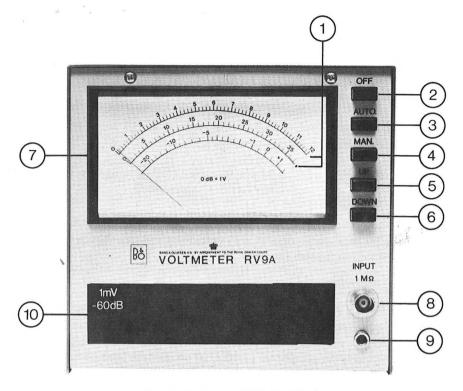


Fig. 2. Voltmeter RV9A set forfra.

- 6. Ned i område ved manuelt områdeskift. For hvert tryk på knappen gøres området 10 dB mindre.
- 7. Drejespoleinstrument.
- 8. Indgang (BNC).
- 9. Stel.
- 10. Områdeudlæsning. Det udlæste svarer til fuldt udslag ("0" på dB-skalaen).

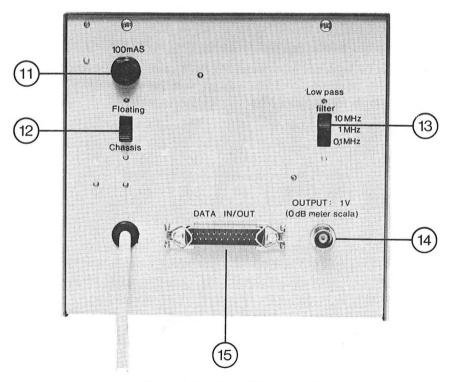


Fig. 3. Voltmeter RV9A set bagfra.

- 11. Netsikring (100 mA træg).
- 12. Omskifter for tilslutning af netledningens beskyttelsesjord til stel ("Chassis"). I stilling "Floating" er netledningens beskyttelsesjord afbrudt fra stel.
- 13. Omskifter til indkobling af lavpas-filter i monitor-udgangen (14).
- 14. Monitor-udgang. Udgangsspændingen er proportional med udslaget på drejespoleinstrumentet. Ved fuldt udslag ("0" på dB-skalaen) er udgangsspændingen 1 V ±0,3 dB.
- 15. Data ind-/udgang til styring af område og information om det valgte område og udslaget på drejespoleinstrumentet.

Apparatet tændes ved at indtrykke "AUTO" (3) for automatisk betjening eller "MAN" (4) for manuel betjening. Der vil da komme lys i skalaindikeringen (1) og område-udlæsningsenheden (10). Apparatet bør herefter varme op i nogle minutter for stabilisering.

Valg af målekabel

Måleobjektet tilsluttes RV9A via et egnet målekabel. Ved lave tilslutningsimpedanser anvendes det medfølgende skærmede kabel, der har en egenkapacitet på ca. 145 pF. Såfremt tilslutningskapaciteten ønskes mindre, hvilket især er påkrævet ved højere frekvenser, vil det være bedre at anvende en almindelig 1:10 oscilloskopprobe, der har en tilslutningskapacitet på 10 ... 20 pF. Der må tages hensyn til, at en sådan probe nedsætter følsomheden 10 gange (20 dB). Man skal altså gange det aflæste resultat med 10.

Automatisk områdeskift

Funktionsomskifteren sættes i "AUTO" (3). Måleobjektet tilsluttes RV9A's indgang via et egnet måle-kabel (se under "Valg af målekabel"). Attenuatoren vil herefter automatisk indstille sig således, at dreje-spoleinstrumentets viser befinder sig mellem ÷10 dB og +1,5 dB på dB-skalaen. En af skalaindikatorlamperne (1) vil lyse op og dermed indikere, hvilken skala der skal aflæses. Områdeudlæsningen (10) vil vise, hvilken værdi fuldt udslag har. Såfremt det tilførte signals amplitude er meget varierende, kan det forstyrre den automatiske attenuator, i så fald skiftes over til manuelt områdeskift.

Manuelt områdeskift

Funktionsomskifteren sættes i "MAN" (4). Det ønskede område vælges ved at trykke på "UP" – eller "DOWN" knappen. Ved tryk på "UP" (5) bliver området større og ved tryk på "DOWN" (6) bliver området mindre. For hvert tryk ændres følsomheden 10 dB.

RV9A anvendt som monitorforstærker eller måleforstærker

På bagsiden af voltmeteret findes der en AC-udgang (14), fig. 3., hvor udgangsspændingen er proportional med udslaget på drejespoleinstrumentet. Ved fuldt udslag ("0dB") er udgangsspændingen 1 V ±0,3 dB, hvoraf følger at den maksimale forstærkning bliver 60 dB (1000 gange).

Område (mV)	1	3	10	30	100	300	1000
Forstærkning (dB)	60	50	40	30	20	10	0

Ved automatisk områdeskift vil udgangsspændingen altid ligge i området 300 mV ... 1,2 V, idet attenuatoren automatisk vil indstille sig til den nødvendige forstærkning. Såfremt man tilslutter et oscilloskop eller anden form for monitor til denne udgang, opnås den fordel, at man ikke behøver at betjene indgangsattenuatoren på dette instrument.

Ønskes derimod en bestemt forstærkning, benyttes manuel områdeskift, idet voltmeteret stilles i det område, der svarer til den ønskede forstærkning (se tabel).

Fiernbetjening (Remote)

Samtlige funktioner, svarende til trykknapperne på forsiden, kan fjernbetjenes via "DATA IN/OUT-multifatningen (15). Styreniveauerne, der skal benyttes, er almindelige TTL-niveauer.

Trykknappen "AUTO" (3) indtrykkes, hvorefter den ønskede funktion fås ved at påtrykke de til denne funktion hørende ben i multifatningen et logisk "0"-niveau.

Tabel 1. "DATA IN/OUT".

Ben nr.	Betegnelse	Ben nr.	Betegnelse
1	Data indgang A	14	"AUTO"
2	"" B	15	"UP" 1
3	" " C	16	"UP" 2
4	" " D	17	"DOWN" 1
5	Load Data	18	"DOWN" 2
6	Data udgang Q _A	19	Stel for ben nr. 14 18
7	" " Q _B	20	Ikke forbundet
8	" " Q _C	21	Analog udgang (DC)
9	" " Q _D	22	Stel for ben nr. 21 25
10	Stel for ben nr. 1 9	23	+ 5V, max. 25 mA*
11	Ikke forbundet	24	+ 12V, max. 50 mA
12	"	25	÷ 12V, max. 15 mA
13	,, ,,		

^{*} Ønskes en større strøm end 25 mA fra +5V-forsyningen påmonteres IC22 en køleplade på min. 10 cm².

Endvidere kan RV9A, hvis det ønskes, styres direkte ind i et hvilket som helst område ved først at påtrykke ben nr. 1 ... 4 den til det ønskede område svarende bit-kombination (tabel 2), hvorefter tælleren loades med et "0" på ben nr. 5.

Tabel 2. Bit-kombination for områdevalg.

	1mV	3mV	10mV	30mV	100mV	300mV	1 V	3V	10V	30V	100V	300V
A	0	1	0	1	0	1	0	1	0	1	0	1
В	0	0	1	1	0	0	1	1	0	0 .	1	1
С	0	0	0	0	1	1	1	1	0	0	0	0
D	0	0	0	0	0	0	0	0	1	1	1	1

Data-udgang

På ben nr. 6 ... 9 i multifatningen fås information om det valgte område. Informationen er en 4-bit kombination med TTL-niveau, hvis kode ligeledes fremgår af tabel 2.

Information om meterudslaget fås på ben nr. 21 i form af en analog DC-spænding, der ved fuldt udslag ("0 dB" på dB-skalaen) er på 2,7 V.

VIRKEMÅDE

Voltmeter RV9A består af to hovedsektioner, nemlig et konventionelt millivoltmeter med en AC-udgangsforstærker samt et kredsløb, der styrer millivoltmeterets attenuatorer samtidig med, at det informerer en udlæsningsenhed om, hvilken stilling attenuatorerne står i.

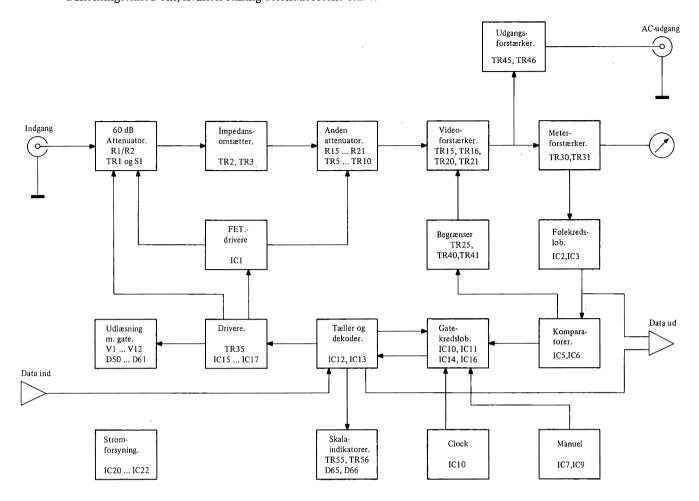


Fig. 4. Funktionsdiagram.

Indgangsattenuator

Indgangsattenuatoren R1/R2 er kapacitivt kompenseret for at opnå den samme dæmpning over hele frekvensområdet. I mV-områderne er attenuatorens udgangsspænding lig indgangsspændingen, medens den i V-områderne er dæmpet 60 dB. Omskiftningen foregår med S1 og TR1, der er henholdsvis et reed-relæ med sluttekontakt og en FET-transistor.

Impedansomsætter

I impedansomsætteren, der består af TR2 og TR3, er anvendt en FET-transistor for at opnå en høj indgangsimpedans, medens den kraftige modkobling bevirker høj stabilitet, lav udgangsimpedans samt en forstærkning på ca. 1. Dioderne D1 ... D4 sikrer FET'en mod overbelastning, således at den maksimale spænding på gate'n er ca. ± 1.4 V.

Anden attenuator er en lavimpedanset spændingsdeler bestående af modstandene R15 ... R21. Den er ligesom indgangsattenuatoren frekvenskompenseret. Omskiftningen sker i spring på 10 dB v.h.a. FET-transistorerne TR5 ... TR10, der styres af en transistorarray (IC1), bestående af 7 darlington-transistorer.

Videoforstærkeren består af to kredsløb, TR15/TR16 og TR20/TR21. I det første kredsløb, der har en forstærkning på 24 dB, er tilbagekoblingen gjort frekvensafhængig. Ved middelfrekvenser er forstærkningen bestemt af parallelforbindelsen af R35, R36 og R33. Ved lave frekvenser hæves forstærkningen af C22 og ved de høje frekvenser er det C27, der kompenserer.

Det andet kredsløb (TR20/TR21) har en forstærkning på 22 dB, og her bestemmes forstærkningen af R44 og R45. Dioderne D15 og D16 virker som begrænsere.

Meterforstærkeren består af TR30 og TR31, hvor drejespoleinstrumentet, der har fuldt udslag ved 0,5 mA, er armene på en broopstilling bestående af C40, C41, D25 og D26, som igen udgør en del af trinets tilbagekoblingsnetværk. Drejespoleinstrumentet er serieforbundet med R65 på 1,8 K Ω for at få frembragt en spænding, der er analog med strømmen gennem instrumentet og dermed med viserudslaget.

Udgangsforstærkeren TR45/TR46 er en bredbåndsforstærker med en forstærkning på 14 dB. På udgangen kan der med en omskifter (13), der er ført ud på bagpladen, tilkobles en kondensator, der sammen med udgangsimpedansen på 75 Ω , danner et lavpas-filter med en øvre grænsefrekvens på 1 MHz eller 0,1 MHz (\div 3 dB).

Følekredsløb. Den analoge spænding over R65 tilføres en operationsforstærker (IC3), der er koblet som differentialforstærker, og er således til stede på udgangen som et "common-mode"-signal.

For at fjerne AC-komponenten fra den pulserende DC-spænding, er der indført et aktivt lavpas-filter (IC2) med en grænsefrekvens på ca. 3 Hz.

Spændingen på udgangen af lavpas-filteret vil således være en DC-spænding, der er analog med viserudslaget.

Styring af attenuatorerne (fig. 5). Uden signal på indgangene af komparatorerne vil øvre komparator give "0", medens nedre giver "1". Er funktionsomskifteren samtidig sat i "AUTO", vil auto-signalet ligeledes være "1" og clock'en vil blive lukket gennem IC14A. Da signalet fra den monostabile multivibrator (IC9) er "0", vil clock'en også blive lukket gennem IC11D og videre gennem IC11C, og tælleren vil tælle ned, indtil 1 mV-området nås, hvorved der lukkes af for clock'en i IC11C.

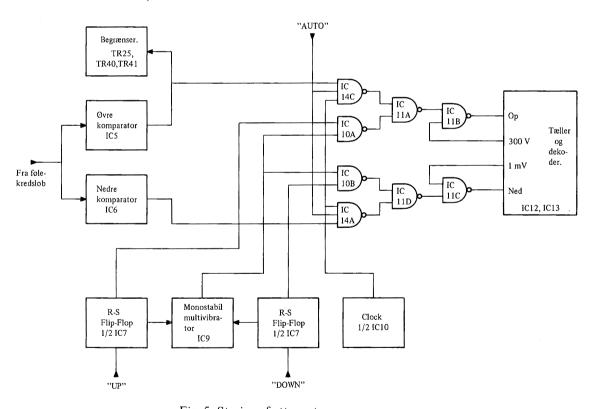


Fig. 5. Styring af attenuatorerne.

Et stigende signal på RV9A's indgang vil medføre en stigende DC-spænding på indgangen af komparatorerne. Når denne DC-spænding når en værdi svarende til 1/3 udslag (÷10 dB), vil den nedre komparator give "0", hvorved der lukkes af for clock'en i IC14A.

Stiger signalet på indgangsbøsningen yderligere, vil DC-spændingen på komparatorernes indgange nå en værdi, der svarer til fuldt udslag (+1,5 dB), og den øvre komparator give "1". Herved vil clock'en nu blive lukket gennem IC14C, IC11A og IC11B, og tælleren vil tælle et trin opad.

Heraf ses, at såfremt drejespoleinstrumentets udslag er større end fuldt udslag (+1,5 dB) eller mindre end 1/3 udslag, vil clock'en blive lukket ind på tælleren, og denne vil køre. Befinder signalet sig derimod mellem 1/3 og fuldt udsalg, er der lukket for clock'en, og tælleren vil ikke køre.

Ønsker man manuelt at styre områdeskiftet, sættes funktionsomskifteren i "MAN". Derved bliver autosignalet (fig. 5) "0", og der lukkes for clock'en.

Påvirkes nu "UP" eller "DOWN"-knappen vil den pågældende R-S flip-flop give "1" og samtidig trigge den monostabile multivibrator. De to "1" 'ere på indgangene af IC10A eller IC10B resulterer i et "0" på indgangen af tælleren. Når mulitvibratoren derefter går tilbage i sin stabile tilstand (efter ca. 40 mS) vil indgangen på tælleren blive "1", og denne vil tælle et trin op eller ned.

Proceduren gentages for hver gang "UP" eller "DOWN"-knappen påvirkes.

Begrænser Uden signal på indgangsbøsningen vil attenuatorerne stille sig i 1 mV-området. Tilsluttes nu en spænding på f.eks. 1 V, medfører dette en voldsom overstyring af forstærkerne. For at beskytte drejespole-instrumentet og for at forhindre en overstyring af meter-forstærkeren, der er længe om at komme i balance igen (C44), hvorved attenuatorerne vil stille sig i et for højt område, er der indført et begrænserkredsløb.

Kredsløbet består af TR25, TR40 og TR41 og træder i funktion, hver gang øvre komparators udgang bliver "1". Derved går TR25, der er en FET, on og danner sammen med R50 en spændingsdeler, hvis forhold er beregnet således, at meter-forstærkeren ikke bliver overstyret.

Tæller og dekoder. Tælleren (IC12) er en synkron 4-bit binær op-ned tæller med "preset", medens dekoderen er BCD til decimal dekoder. Da attenuatorerne dækker 12 områder, og dekoderen kun kan tælle til 10, dækkes de sidste to områder v.h.a. to 3-input NAND-gates (IC8C og IC14B), der føler på tællerens udgange.

Driverne er en transistor-array bestående af syv darlingtontransistorer (IC17) samt TR35, som styrer lampeudlæsningen og attenuatorerne.

IC8A og IC8B sørger for, at 60 dB-attenuatoren ikke aktiveres i mV-områderne, medens IC15A, IC15B og IC16 sørger for, at anden attenuator starter forfra, efter at 60 dB-attenuatoren er aktiveret.

Udlæsning m. gate. Udlæsningen består af 12 lamper, der er delt op i to grupper, en my-gruppe og en V-gruppe. TR50 og TR51 samt dioderne D50 ... D61 sørger for, at de to grupper aktiveres på de rigtige tidspunkter.

FET-driverne er ligeledes en transistor-array bestående af syv darlington-transistorer (IC1). Da FET'erne styres med en negativ spænding, refererer IC1 til ÷12 V (ben 8), og det er derfor nødvendigt at indføre zenerdioderne D5 ... D11 for at få niveauet (0 til +12 V) fra IC17 til at styre IC1.

Skalaindikatorerne består af to lysdioder, der er anbragt i collectorerne på TR55 og TR56. Transistorerne er styret af tællerens Q1-udgang.

Clock-generatoren består af IC10C og IC10D, der er koblet som astabil multivibrator med en repetitionsfrekvens på ca. 7 Hz.

Strømforsyningen består af tre kredsløb, der frembringer +12 V, ÷12 V og +5V. Hver af de tre kredsløb er bygget op omkring en 3-bens regulator, og alle har indbygget overbelastningssikring.

JUSTERING

Voltmeter RV9A er konstrueret til lang tids drift uden efterjustering og vedligeholdelse. Kun i tilfælde af komponentfejl vil det under normale omstændigheder være nødvendigt at kontrollere og justere instrumentet. I så fald bør nedenstående procedure følges.

For at kunne foretage de beskrevne justeringer er følgende instrumenter nødvendige:

- 1. Digital-voltmeter, AC/DC, nøjagtighed bedre end 0,1%.
- 2. LF-generator, 10 Hz ... 10 MHz, amplitudestabilitet bedre end ±0,2 dB over hele frekvensområdet.

Justering af følsomhed og frekvensgang

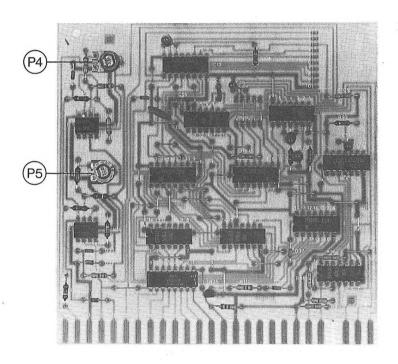
- 1. Drejespoleinstrumentets mekaniske nulpunkt kontrolleres. I tilfælde af, at justering er nødvendig, aftages svøbet og den bageste del af drejespoleinstrumentet, hvorved det bageste båndophæng bliver tilgængelig.
- 2. Voltmeteret tilsluttes korrekt netspænding. Funktionsomskifteren sættes i stilling "AUTO".
- 3. En 1 KHz-sinusspænding på 100 mV (kontrolleres med digitalvoltmeteret) tilsluttes indgangsklemmerne. Drejespoleinstrumentet justeres til fuldt udslag ("0 dB" på dB-skalaen) med potentiometeret P1, fig. 6.

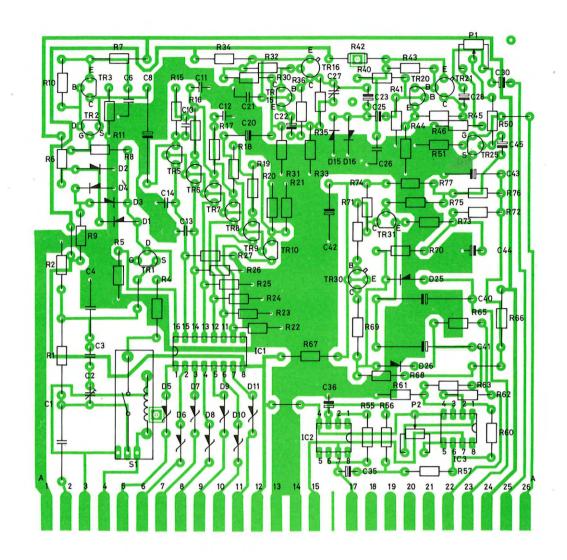
Fig. 6. Justering af følsomhed og frekvensgang.

- 4. Generatorens frekvens ændres til 10 MHz, hvorefter trimmeren C27 justeres således, at instrumentet viser "÷0,7 dB" på dB-skalaen.
- 5. Indgangsspændingen ændres til 1 V, frekvensen ændres til 1 MHz, hvorefter trimmeren C2 justeres således, at instrumentet viser "0 dB" på dB-skalaen.

Justering af skifteniveauer

- 6. En 1 KHz-sinusspænding på ca. 120 mV tilsluttes indgangsklemmerne og justeres således, at drejespole-instrumentet viser "+1,5 dB" på dB-skalaen.
- 7. Potentiometeret P4, fig. 7, justeres således, at områdeskiftet til næste højere område sker ved "+1,5 dB".
- 8. Indgangsspændingen ændres til 100 mV svarende til "0 dB" på dB-skalaen, hvorefter potentiometeret P5 justeres således, at områdeskiftet til næste lavere område sker ved "0 dB".




Fig. 7. Justering af skifteniveauer.

STYK	LISTE				
R1		Modstand	1 M Ω	1%	0,125 W
R2		Modstand	1 K Ω	1%	0,125 W
R4	5001029	Modstand	1 K Ω	10%	0,5 W
R5	5010046	Modstand	12 K Ω	5%	0,125 W
R6	5010046	Modstand	12 K Ω	5%	0,125 W
R7	5001001	Modstand	10 Ω	10%	0,5 W
R8	5001001	Modstand	$10~\Omega$	10%	0,5 W
R9	5010046	Modstand	$12\mathrm{K}\Omega$	5%	0,125 W
R10	5010144	Modstand	$680~\Omega$	5%	0,125 W
R11	5010153	Modstand	1,2 K Ω	5%	0,125 W
R15	3010102	Modstand	$1,18~\mathrm{K}\Omega$	1%	0,125 W
R16		Modstand	374 Ω	1%	0,125 W
R17		Modstand	118Ω	1%	0,125 W
R18		Modstand	37,4 Ω	1%	0,125 W
R19		Modstand	11,8 Ω	1%	0,125 W
R20		Modstand	12,1 Ω	1%	0,125 W
R21		Modstand	$10~\Omega$	1%	0,125 W
R22	5010046	Modstand	12 K Ω	5%	0,125 W
R23	5010046	Modstand	12 K Ω	5%	0,125 W
R24	5010046	Modstand	12 K Ω	5%	0,125 W
R25	5010046	Modstand	12 K Ω	5%	0,125 W
R26	5010046	Modstand	$12\mathrm{K}\Omega$	5%	0,125 W
R27	5010046	Modstand	12 K Ω	5%	0,125 W
R30	5010077	Modstand	470 K Ω	5%	0,125 W
R31	5010045	Modstand	47 K Ω	5%	0,125 W
R32	5010076	Modstand	3,3 K Ω	5%	0,125 W
R33		Modstand	$100~\Omega$	1%	0,125 W
R34	5001001	Modstand	$10~\Omega$	10%	0,5 W
R35		Modstand	1,5 K Ω	1%	0,125 W
R36	5010052	Modstand	6,8 K Ω	5%	0,125 W
R40	5010047	Modstand	120 K Ω	5%	0,125 W
R41	5010053	Modstand	15 K Ω	5%	0,125 W
R42	5001001	Modstand	10 Ω	10%	0,5 W
R43	5010144	Modstand	$680~\Omega$	5%	0,125 W
R44		Modstand	274 Ω	1%	0,125 W
R45		Modstand	3,48 K Ω	1%	0,125 W
R46	5010154	Modstand	8,2 K Ω	5%	0,125 W
R50	5010039	Modstand	$68~\Omega$	5%	0,125 W
R51	5010046	Modstand	12 K Ω	5%	0,125 W
R55	5010117	Modstand	330 K Ω	5%	0,125 W
R56	5010072	Modstand	$180~\mathrm{K}\Omega$	5%	0,125 W
R57	5010072	Modstand	180 K Ω	5%	0,125 W
R60		Modstand	1 M Ω	1%	0,125 W
R61		Modstand	1 M Ω	1%	0,125 W
R62		Modstand	287 K Ω	1%	0,125 W
R63		Modstand	287 K Ω	1%	0,125 W
R65	5010066	Modstand	1,8 K Ω	5%	0,125 W
R66	5001001	Modstand	$10~\Omega$	10%	0,5 W
R67	5001001	Modstand	$10~\Omega_{-}$	10%	0,5 W
R68	5010076	Modstand	3,3 KΩ	5%	0,125 W
R69	5001013	Modstand	100Ω	10%	0,5 W
R70	5010053	Modstand	15 KΩ	5%	0,125 W
R71	5001001	Modstand	10Ω	10%	0,5 W
R72	5010072	Modstand	180 KΩ	5%	0,125 W
R73	5010151	Modstand	147 Ω	1%	0,125 W
R74	5010154	Modstand	8,2 ΚΩ	5%	0,125 W
R75	5001013	Modstand	100Ω	10%	0,5 W
R76	5010074	Modstand	680 KΩ	5%	0,125 W
R77	5010117	Modstand	330 KΩ	5%	0,125 W

R80	5010065	Modstand	100Ω		5%	0,125 W	
R81	5010057	Modstand	150 Ω		5%	0,125 W	
R82	5010040	Modstand	1 K Ω		5%	0,125 W	
R83	5010041	Modstand	5,6 K Ω		5%	0,125 W	
R84	5010040	Modstand	$1~\mathrm{K}\Omega$		5%	0,125 W	
R85	5010069	Modstand	3,9 K Ω		5%	0,125 W	
R86	5010141	Modstand	$27~\mathrm{K}\Omega$		5%	0,125 W	
R87	5010057	Modstand	150 Ω		5%	0,125 W	
R88	5010067	Modstand	560 Ω		5%	0,125 W	
R89	5010068	Modstand	$820~\Omega$		5%	0,125 W	
R90	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R95	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R96	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R97	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R98	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R99	5010141	Modstand	$27~\mathrm{K}\Omega$		5%	0,125 W	
R105	5010048	Modstand	4,7 K Ω		5%	0,125 W	
R106	5010058	Modstand	470Ω		5%	0,125 W	
R107	5010298	Modstand	2,7 K Ω		5%	0,125 W	
R108	5010298	Modstand	2,7 K Ω		5%	0,125 W	
R110	5010040	Modstand	$1~\mathrm{K}\Omega$		5%	0,125 W	
R111	5010040	Modstand	1 K Ω		5%	0,125 W	
R115	5010052	Modstand	6,8 K Ω		5%	0,125 W	
R116	5010069	Modstand	3,9 K Ω		5%	0,125 W	
R117	5010047	Modstand	$120~\mathrm{K}\Omega$		5%	0,125 W	
R120	5010135	Modstand	$18~\mathrm{K}\Omega$		5%	0,125 W	
R121	5010049	Modstand	$100~\mathrm{K}\Omega$		5%	0,125 W	
R122		Modstand	60,4 Ω		1%	0,125 W	
R123	5010144		680Ω		5%	0,125 W	
R124	5001001	Modstand	10Ω]	10%	0,5 W	
R125		Modstand	392Ω		1%	0,125 W	
R126	5010039	Modstand	$68~\Omega$		5%	0,125 W	
R130	5010153	Modstand	1,2 K Ω		5%	0,125 W	
R131	5010153	Modstand	$1,2~\mathrm{K}\Omega$		5%	0,125 W	
R135	5010040	Modstand	1 K Ω		5%	0,125 W	
R136	5010040	Modstand	1 K Ω		5%	0,125 W	
R137	5010091	Modstand	$82 \mathrm{K}\Omega$		5%	0,125 W	
R138	5010040	Modstand	1 KΩ		5%	0,125 W	
P 1	5370141	Potentiometer, TR	1 KS	2—lin	0,1 W		
P2	5370074	Potentiometer, TR	10 K S		0,1 W		
P4	5370002	Potentiometer, TR	500 Ω -	–lin	0,1 W		
P5	5370059	Potentiometer, TR	250 Ω-	–lin	0,1 W		
C1	4134009	Kondensator, MK		,22 μF		20%	400 V
C2		Kondensator, TR		3,5 pF			
C3		Kondensator, K. Pla	aq.	1,8 pF		5%	63 V
C4	4100019	Kondensator, PS		1 nF		2,5%	63 V
C6	4030010	Kondensator, K.		$0,1~\mu\mathrm{F}$			12 V
C8	4200199	Kondensator, Elko.		l00 μF			6,4 V
C10	4003125	Kondensator, K. Pla	_	33 pF		2%	63 V
C11	4000078	Kondensator, K. Pla	-	68 pF		2% •~	63 V
C12	4000023	Kondensator, K. Pla	-	150 pF		5%	63 V
C13	4010041	Kondensator, K. Pla	-	10 nF			40 V
C14	4010041	Kondensator, K. Pla		10 nF			40 V
C20	4201041	Kondensator, Elko.		6,8 μF			40 V
C21	4030010	Kondensator, K.		0,1 μF			12 V
C22	4201069	Kondensator, Elko.		2,2 μF			35 V 16 V
C23 C25	4200230 4200230	Kondensator, Elko. Kondensator, Elko.		15 μF 15 μF			16 V 16 V
023	4200230	Kondensator, EIKO.	I allt.	13 μΓ			10 4

C26	4030010	Kondensator, K.	$0,1~\mu\mathrm{F}$		12 V
C27	4340002	Kondensator, TR.	22 pF		
C28	4200230	Kondensator, Elko. Tant.	15 μF		16 V
.C30	4200230	Kondensator, Elko. Tant.	15 μF		16 V
C35	4201072	Kondensator, Elko. Tant.	$0,22 \mu F$		35 V
C36	4200169	Kondensator, Elko. Tant.	$0,1 \mu F$		35 V
C40	4201023	Kondensator, Elko.	32 μF		64 V
C41	4201023	Kondensator, Elko.	32 μF		64 V
C42	4200154	Kondensator, Elko.	22 μF		25 V
C43	4200154	Kondensator, Elko.	22 μF		25 V
C44	4200109	Kondensator, Elko.	470 μF		6 V
C45	4200230	Kondensator, Elko. Tant.	15 μF		16 V
C46	4201069	Kondensator, Elko. Tant.	$2,2 \mu F$		35 V
C50	4201057	Kondensator, Elko. Tant.	1 μF	g A	35 V
C51	4201069	Kondensator, Elko. Tant.	$2,2 \mu F$		35 V
C55	4010060	Kondensator, K. Plaq.	22 nF		40 V
C56	4010027	Kondensator, K. Plaq.	1 nF	10%	100 V
C57	4200228	Kondensator, Elko. Tant	47 μF		6,3 V
C60	4030010	Kondensator, K.	0,1 μF		12 V
C61	4200228	Kondensator, Elko. Tant.	47 μF		6,3 V
C62	4200228	Kondensator, Elko. Tant.	47 μF		6,3 V
C65	4021001	Kondensator, KS	4,7 nF		5 KV
C66	4200174	Kondensator, Elko.	470 μF		25 V
C67	4030010	Kondensator, K.	0,1 μF		12 V
C68	4200183	Kondensator, Elko.	220 μF		25 V
C69	4201057	Kondensator, Elko. Tant	1 μF		35 V
C70	4200174	Kondensator, Elko.	470 μF		25 V
C71	4030010	Kondensator, K.	$0,1~\mu\mathrm{F}$		12 V
C75	4030010	Kondensator, K.	0,1 μF		12 V
C76	4200067	Kondensator, Elko.	220 μF		10 V
C77	4010061	Kondensator, K. Plaq.	2,2 nF	10%	63 V
C78	4010060	Kondensator, K. Plaq.	22 nF		40 V
C79	4003135	Kondensator, K. Plaq.	39 pF	5%	63 V
D1					
D4	8300058	Diode, Si		1N4148	
D5	8300029	Diode, Zener		ZF12	
D6					
D11	8300031	Diode, Zener		ZF18	
D15	8300209	Diode, Ge		AA144	
D16	8300209	Diode, Ge		AA144	
D25		Diode, Schottky		5082-2811	
D26		Diode, Schottky		5082-2811	
D30	8300036	Diode, Zener		ZF4,7	
D31	8300154	Diode, Zener		ZF6,8	
D32	8300169	Diode, Zener		ZF5,1	
D33	8300028	Diode, Zener		ZF9,1	
D35	0500020	21040, 201101		2,7,1	
D37	8300058	Diode, Si		1 N 4148	
D40	0200155	T		D 1001 500	
D42	8300155	Ensretter, Si		B40C1500	
D45	8300029	Diode, Zener		ZF12	
D50	02000=0	To: 1 a:		43774	
D61	8300058	Diode, Si		1N4148	
D65	8300216	Diode, Lys		LD461	
D66	8300216	Diode, Lys		LD461	

TR1	7	Γransistor, FET	U1898E
TR2	7	Transistor, FET	BF244C
TR3 832	20339	Γransistor, PNP	BC212B
TR5		,	
TR10	7	Γransistor, FET	U1898E
			BC212B
TR15 832			
TR16			BSX19
TR20 832	20339	Γransistor, PNP	BC212B
TR21	7	Transistor, NPN	BSX19
TR25	7	Γransistor, FET	U1898E
TR30 832			BF167
TR31 832			BC212B
TR35 832			BC182B
TR40 832			BC182B
			BC182B
TR41 832			
TR45 832		•	BC182B
TR46 832		•	BC212B
TR50 832	20339	Γransistor, PNP	BC212B
TR51 832	20339	Γransistor, PNP	BC212B
TR55 832	20137	Γransistor, NPN	BC182B
TR56 832			BC182B
1100 001			
101		D :	
IC1		Driver	MC 1413P
IC2	(Operational Amplifier	LM 741C
IC3	(Operational Amplifier	LM 741C
IC5	(Operational Amplifier	LM 741C
IC6		Operational Amplifier	LM 741C
IC7		Quad 2 Input Nand Gate	74LS00
IC8		Triple 3 Input Nand Gate	74LS10
IC9		Monostable Multivibrator	
			74L121
IC10			7400
IC11			74LS00
IC12		· · · · · · · · · · · · · · · · · · ·	74193
IC13	I	BCD-Decimal Decoder	74LS42
IC14	7	Triple 3 Input Nand Gate	74LS10
IC15	(Quad 2 Input Nand Gate	74LS00
IC16			74LS00
IC17		-	MC1413P
			LM 340 T-12
IC21			
			LM320 T-12
IC22	'	Voltage Regulator, -12V	LM 340 T-5
	1	Drejespoleinstrument	0,5 mA
00		Nettransformer	7,5V/13,8V/13,8V
		Netledning	$3 \times 0.75 \text{ mm}^2$
		Omskifter, funktion	
74	00058	Omskifter, net	
•	(Omskifter, "Floating/Chassis"	
		Omskifter, "Low passfilter"	
72		Sikringsholder	
		Sikring	100 mA
		BNC-fatning	137-20-000
			12V - 1W
		Lampe	
		Lampeglas (udlæsning)	
		Lampehus	
05		Gummifod	
	l	Manual	RV9A

Komponentplacering for printplade A. Attenuator, meterkredsløb m.m. (TR1...TR31, IC1...IC3).

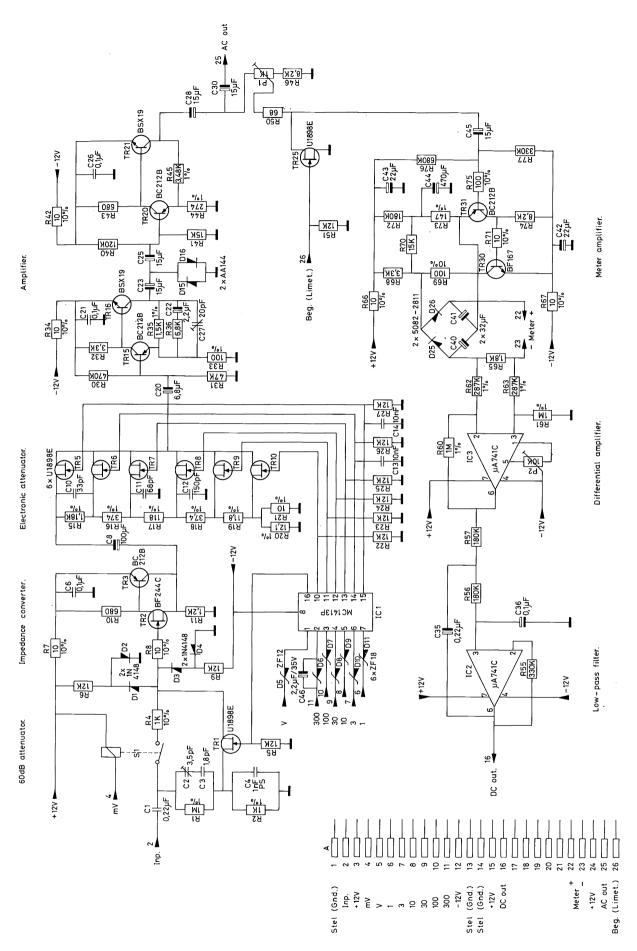
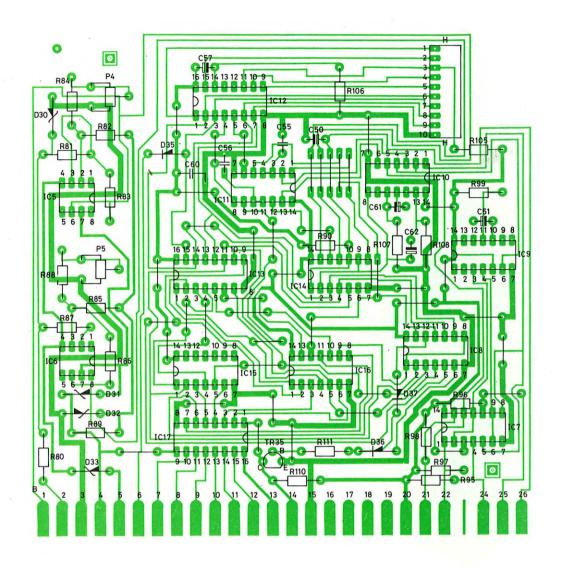



Diagram for printplade A. Attenuator, meterkredsløb m.m. (TR1...TR31, IC1...IC3).

Komponentplacering for printplade B. Styrekredsløb. (TR35, IC5...IC17).

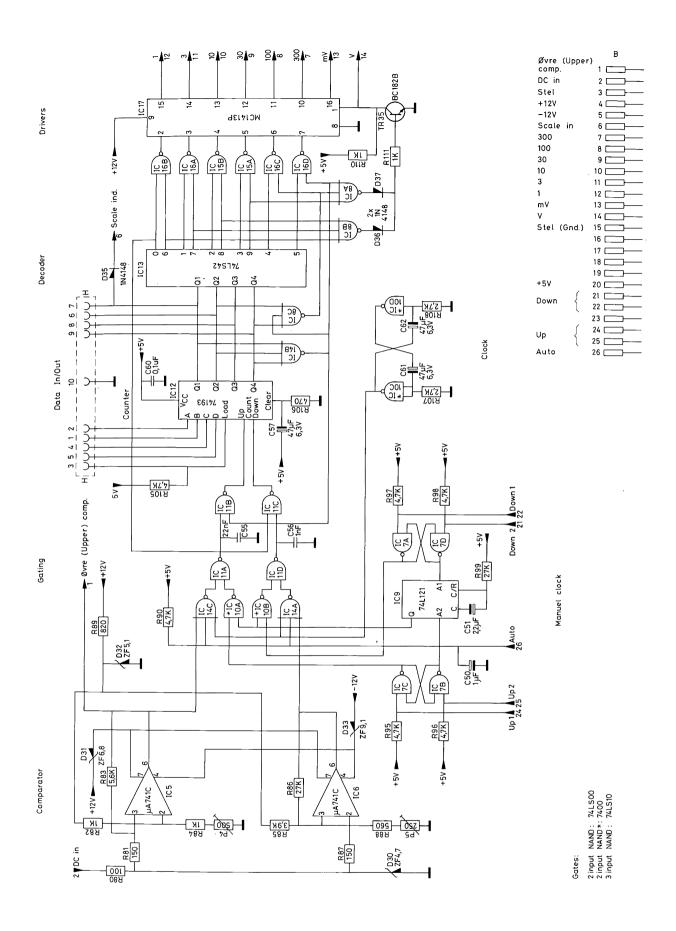
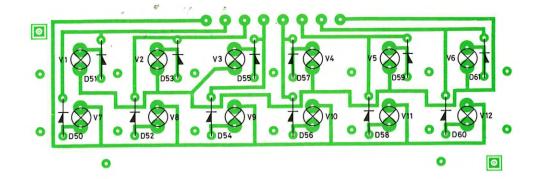



Diagram for printplade B. Styrekredsløb. (TR35, IC5...IC17).

Komponentplacering for bundprint. Power Supply, monitorforstærker, områdeudlæsning m.m. (TR40...TR56, IC20...IC22).

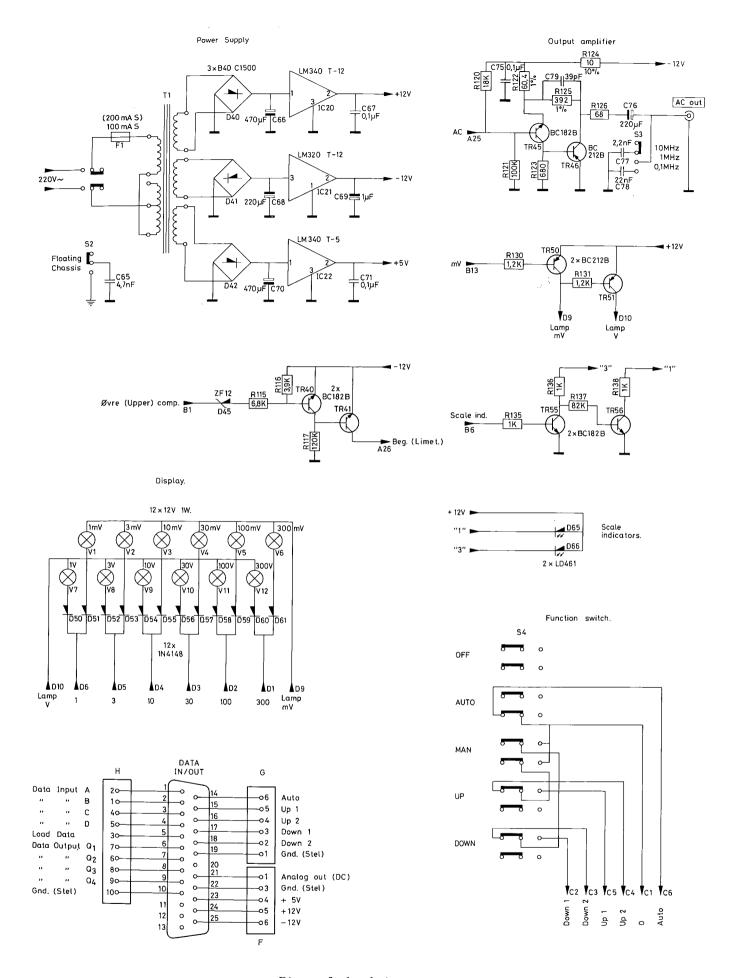


Diagram for bundprint. Power Supply, monitorforstærker, områdeudlæsning m.m. (TR40...TR56, IC20...IC22).

GARANTI OG SERVICE

For dette B&O måleinstrument yder BANG & OLUFSEN A/S en garanti, gældende i et år fra faktureringsdatoen.


Garantien dækker alle fabrikations- og materialefejl, der opstår under normalt brug af måleinstrumentet.

Garantien omfatter samtlige dele i apparatet og det arbejde, der udføres af BANG & OLUF-SEN A/S i forbindelse med udskiftning af defekte dele.

Opstår der en funktionsfejl i apparatet, indsendes det til BANG & OLUFSEN A/S, forsvarligt emballeret og vedlagt en udførlig fejlrapport.

Er fejlen af en sådan art, at De selv ønsker at udskifte en eller flere dele, kan de defekte dele indsendes til ombytning uden beregning, under henvisning til bestillingsnumrene i den tilhørende stykliste. Ved indsendelse opgives instrumentets fabrikationsnummer.

BANG & OLUFSEN A/S STRUER, DANMARK

