Jensen, M. H., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S. E., Simonsen, C. Z., Grønhøj, M. H., Rom Poulsen, F.
, Rehman, N. U. & Korshoej, A. R. (2023).
Reliability and Performance of the IRRAflow® System for Intracranial Lavage and Evacuation of Hematomas - A Technical Note.
https://doi.org/10.1101/2023.07.07.23292372
Jensen, R. I. T., Ferwerda, J., Jørgensen, K. S., Jensen, E. R., Borg, M., Krogh, M. P., Jensen, J. B.
& Iosifidis, A. (2023).
A synthetic data set to benchmark anti-money laundering methods.
Scientific Data,
10(1), Article 661.
https://doi.org/10.1038/s41597-023-02569-2
Jensen, M. H., Rasmussen, M., Mohamad, N., Dyrskog, S. E., Thorup, L., Mikic, N., Wismann, J., Grønhøj, M. H., Rom Poulsen, F.
, Nazari, M., Rehman, N. U., Simonsen, C. Z. & Korshoej, A. R. (2023).
Safety, harm, and efficacy of IRRAflow® versus external ventricular drainage for intraventricular hemorrhage: A randomized clinical trial. medRxiv.
https://doi.org/10.1101/2023.07.08.23292286
Jensen, A. M. D., Schoerghofer-Queiroz, A.
, Ulriksen, M. D., Tcherniak, D.
, Damkilde, L., Talasila, P., Larsen, P. G. & Abbiati, G. (2024).
Digital twin as a service for damage prognosis of offshore wind turbine foundations. In W. Desmet, B. Pluymers, D. Moens & J. del Fresno Zarza (Eds.),
Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics (pp. 4127-4141). KU Leuven, Departement Werktuigkunde.
Jensen, M., Toft Jacobsen, J.
, Sharifirad, I. & Boudjadar, J. (2023).
Advanced Acceleration and Implementation of Convolutional Neural Networks on FPGAs. In J. Chen & L. T. Yang (Eds.),
2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys): Proceedings (pp. 558-565). IEEE.
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys60770.2023.00082
Jain, A., Cunha, F., Bunsen, M. J., Cañas, J. S., Pasi, L.
, Pinoy, N., Helsing, F., Russo, J., Botham, M., Sabourin, M., Fréchette, J., Anctil, A., Lopez, Y., Navarro, E., Perez Pimentel, F., Zamora, A. C., Silva, J. A. R., Gagnon, J., August, T. ... Rolnick, D. (2025).
Insect Identification in the Wild: The AMI Dataset. In A. Leonardis , E. Ricci , S. Roth , O. Russakovsky , T. Sattler & G. Varol (Eds.),
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings (pp. 55-73). Springer.
https://doi.org/10.1007/978-3-031-72913-3_4
Jacobsen, R. H., Matlekovic, L.
, Shi, L., Malle, N., Ayoub, N.
, Hageman, K., Hansen, S., Nyboe, F. F.
& Ebeid, E. (2023).
Design of an Autonomous Cooperative Drone Swarm for Inspections of Safety Critical Infrastructure.
Applied Sciences (Switzerland),
13(3), Article 1256.
https://doi.org/10.3390/app13031256
Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Article 1786.
https://doi.org/10.3390/electronics12081786
Iraji, M., Dehghani, M., Mohammadi, M.
, Vafamand, N. & Boudjadar, J. (2021).
Motor Current Signature Analysis Using Shapelet. In H. Selvaraj, G. Chmaj & D. Zydek (Eds.),
Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020 (pp. 23-33). Springer.
https://doi.org/10.1007/978-3-030-65796-3_3
Iqbal, S., Khan, T. M.
, Naveed, K., Naqvi, S. S. & Nawaz, S. J. (2022).
Recent trends and advances in fundus image analysis: A review.
Computers in Biology and Medicine,
151, Article 106277.
https://doi.org/10.1016/j.compbiomed.2022.106277
Iqbal, S.
, Naveed, K., Naqvi, S. S., Naveed, A. & Khan, T. M. (2023).
Robust retinal blood vessel segmentation using a patch-based statistical adaptive multi-scale line detector.
Digital Signal Processing: A Review Journal,
139, Article 104075.
https://doi.org/10.1016/j.dsp.2023.104075
Inci, E. O., Croes, J., Desmet, W.
, Gomes, C., Thule, C., Lausdahl, K. & Larsen, P. G. (2021).
The Effect and Selection of Solution Sequence in Co-Simulation. In C. R. Martin, M. J. Blas & A. I. Psijas (Eds.),
2021 Annual Modeling and Simulation Conference (ANNSIM) (pp. 1-12). IEEE.
https://doi.org/10.23919/ANNSIM52504.2021.9552130
Hudson, N., Khamfroush, H., Baughman, M.
, Lucani Rötter, D. E., Chard, K. & Foster, I. (2024).
QoS-aware edge AI placement and scheduling with multiple implementations in FaaS-based edge computing.
Future Generation Computer Systems,
157, 250-263.
https://doi.org/10.1016/j.future.2024.03.035
Hudert, M. M., Elvebakken, M. F., Meagher, M.
, Mangliar, L., Zhang, X. & Esterle, L. (2022).
Deep learning enhanced robotic fabrication of timber-to-timber connections with densified hardwood nails. In
Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference: Innovation - Sustainability - Legacy (pp. 1740-1748)
Huang, Q., Li, H., Liao, Y., Hao, Y.
& Zhou, P. (2024).
Noise-NeRF: Hide Information in Neural Radiance Field Using Trainable Noise. In M. Wand, K. Malinovská, J. Schmidhuber & I. V. Tetko (Eds.),
Artificial Neural Networks and Machine Learning – ICANN 2024 - 33rd International Conference on Artificial Neural Networks, Proceedings (pp. 320-334). Springer.
https://doi.org/10.1007/978-3-031-72335-3_22
Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S., Bjerge, K., Madsen, S. A., Jeppesen, M. R. & Melvad, C. (2022).
Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ,
10, Article e13837.
https://doi.org/10.7717/peerj.13837
Hosseini, S., Laursen, K., Rashidi, A., Mondal, T., Corbett, B.
& Moradi, F. (2021).
S-MRUT: Sectored-Multi Ring Ultrasonic Transducer for Selective Powering of Brain Implants.
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,
68(1), 191-200. Article 9112273.
https://doi.org/10.1109/TUFFC.2020.3001084
Horrillo-Quintero, P., Garcia-Trivino, P., Hoseinni, E., Garcia-Vazquez, C. A., Sanchez-Sainz, H., Ugalde-Loo, C. E.
, Peric, V. & Fernandez-Ramirez, L. M. (2024).
Dynamic Fuzzy Logic Energy Management System for a Multi-Energy Microgrid.
IEEE Access,
12, 93221-93234.
https://doi.org/10.1109/ACCESS.2024.3422009