Waheed, H., Akram, W., Islam, S. U., Hadi, A.
, Boudjadar, J. & Zafar, N. (2023).
A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning.
Future Internet,
15(3), [86].
https://doi.org/10.3390/fi15030086
Pedersen, L.
, Wagner, S., Skov, H. & Sandager, P. (2023).
A Time Study for the Analysis of the Potential for the Automated Stepwise Screening Program for Preeclampsia at Week 12 of Gestation. In G. A. Papadopoulos, A. Achilleos, E. Pissaloux & R. Velázquez (Eds.),
ICT for Health, Accessibility and Wellbeing - 2nd International Conference, IHAW 2022, Revised Selected Papers (pp. 189-199). Springer. Communications in Computer and Information Science Vol. 1799
https://doi.org/10.1007/978-3-031-29548-5_13
Carlson Hanse, L., Tjørnild, M. J., Karunanithi, Z., Jedrzejczyk, J. H., Islamagič, L.
, Hummelshøj, N. E., Enevoldsen, M., Johansen, P., Lauridsen, M. H. & Hjortdal, V. E. (2023).
A handsewn pericardial valved pulmonary conduit: pulsatile flow loop in vitro and acute porcine in vivo evaluation.
European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
63(4), [ezad143].
https://doi.org/10.1093/ejcts/ezad143
Alilou, S. M., Maalandish, M., Samadian, A., Abolhassani, P., Hosseini, S. H.
& Khooban, M. H. (2023).
A new high step-up DC-DC converter using voltage lift techniques suitable for renewable applications.
CSEE Journal of Power and Energy Systems.
https://ieeexplore.ieee.org/abstract/document/10058880
Oshnoei, S., Aghamohammadi, M. R., Oshnoei , S., Sahoo, S.
, Fathollahidehkordi, A. & Khooban, M. H. (2023).
A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control.
Applied Energy,
343, [121233].
https://doi.org/10.1016/j.apenergy.2023.121233
Gheisarnejad Chirani, M., Mirzavand, G., Rouhi Ardeshiri, R.
, Andresen, B. & Khooban, M. H. (2023).
Adaptive Speed Control of Electric Vehicles Based on Multi-Agent Fuzzy Q-Learning.
IEEE Transactions on Emerging Topics in Computational Intelligence,
7(1), 102-110.
https://doi.org/10.1109/TETCI.2022.3181159
Frasheri, M., Ejersbo, H., Thule, C., Gomes, C., Kvistgaard, J. L., Larsen, P. G. & Esterle, L. (2023).
Addressing time discrepancy between digital and physical twins.
Robotics and Autonomous Systems,
161, [104347].
https://doi.org/10.1016/j.robot.2022.104347
Tabar, Y. R., Mikkelsen, K. B., Shenton, N.
, Kappel, S. L., Nikbakht, R., Toft, H. O., Henriksen, C. H., Hemmsen, M. C., Rank, M. L.
, Otto, M. & Kidmose, P. (2023).
At-home sleep monitoring using generic ear-EEG.
Frontiers in Neuroscience,
17, [987578].
https://doi.org/10.3389/fnins.2023.987578
Robinson, C., Akerkar, R., Aouada, D., Bagnato, A., Györffi, M., Henshaw, M.
, Larsen, P. G., Hernandez, C.
, Macedo, H. D., Pastrone, C., Popov, P., Sassanelli, C., Völp, M. & Weyer, T. (2023).
Bridging the stakeholder communities that produce cyber-physical systems. In M. Duranton, K. De Bosschere, B. Coppens, C. Gamrat, M. Gray, T. Hoberg, H. Munk, C. Robinson, T. Vardanega & O. Zendra. (Eds.),
HiPEAC Vision 2023: High Peformance Embedded Architecture and Compilation (pp. 32-43)
https://doi.org/10.5281/zenodo.7462013
Benhassen, L. L., Hedensted, J. H., Sharghbin, M., Bechsgaard, T., Nielsen, S. L., Hasenkam, J. M. & Johansen, P. (2023).
Comparison of aortic valve repair techniques with single- and double-ring annuloplasties.
European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
63(5).
https://doi.org/10.1093/ejcts/ezad164
Legaard, C. M., Schranz, T., Schweiger, G., Drgona, J., Falay, B.
, Gomes, C., Iosifidis, A., Abkar, M. & Larsen, P. G. (2023).
Constructing Neural Network Based Models for Simulating Dynamical Systems.
ACM Computing Surveys,
55(11), 1-34. [236].
https://doi.org/10.1145/3567591
Asif, M. R., Foged, N., Bording, T. S., Larsen, J. J. & Christiansen, A. V. (2023).
DL-RMD: a geophysically constrained electromagnetic resistivity model database for deep learning applications.
Earth System Science Data,
15(3), 1389-1401.
https://doi.org/10.5194/essd-2022-345,
https://doi.org/10.5194/essd-15-1389-2023
Jacobsen, R. H., Matlekovic, L.
, Shi, L., Malle, N., Ayoub, N.
, Hageman, K., Hansen, S., Nyboe, F. F.
& Ebeid, E. (2023).
Design of an Autonomous Cooperative Drone Swarm for Inspections of Safety Critical Infrastructure.
Applied Sciences (Switzerland),
13(3), [1256].
https://doi.org/10.3390/app13031256
Musaeus, C. S., Frederiksen, K. S., Andersen, B. B., Høgh, P.
, Kidmose, P., Fabricius, M., Hribljan, M. C., Hemmsen, M. C., Rank, M. L., Waldemar, G. & Kjær, T. W. (2023).
Detection of subclinical epileptiform discharges in Alzheimer's disease using long-term outpatient EEG monitoring.
Neurobiology of Disease,
183, [106149].
https://doi.org/10.1016/j.nbd.2023.106149
Talasila, P., Gomes, C., Mikkelsen, P. H., Arboleda, S. G., Kamburjan, E.
& Larsen, P. G. (2023).
Digital Twin as a Service (DTaaS): A Platform for Digital Twin Developers and Users.
Naseri, F., Gil Arboleda, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C.
, Larsen, P. G. & Gomes, C. (2023).
Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms.
Renewable and Sustainable Energy Reviews,
179, [113280].
https://doi.org/10.1016/j.rser.2023.113280
Mohseni, S-R., Jahanshahi Zeitouni, M., Parvaresh, A., Abrazeh, S.
, Gheisarnejad Chirani, M. & Khooban, M. H. (2023).
FMI real-time co-simulation-based machine deep learning control of HVAC systems in smart buildings: Digital-twins technology.
Transactions of the Institute of Measurement and Control,
45(4), 661-673.
https://doi.org/10.1177/01423312221119635
Honoré, J. T., Rask, R. D.
& Wagner, S. R. (2023).
Fall Detection Combining Android Accelerometer and Step Counting Virtual Sensors. In G. A. Papadopoulos, A. Achilleos, E. Pissaloux & R. Velázquez (Eds.),
ICT for Health, Accessibility and Wellbeing - 2nd International Conference, IHAW 2022, Revised Selected Papers (pp. 3-16). Springer. Communications in Computer and Information Science Vol. CCIS No. 1799
https://doi.org/10.1007/978-3-031-29548-5_1
Kamari, A. & Schultz, C. P. L. (2023).
How can LCA inform early-stage design to meet Danish regulations? The sustainability opportunity metric. In E. Hjelseth, S. F. Sujan & R. J Scherer (Eds.),
ECPPM 2022 - eWork and eBusiness in Architecture, Engineering and Construction 2022: Proceedings of the 14th European Conference on Product and Process Modelling (ECPPM 2022), September 14-16, 2022, Trondheim, Norway. (Vol. 1, pp. 27-34). CRC Press.
https://doi.org/10.1201/9781003354222-427,
https://doi.org/10.1201/9781003354222-4
Amariei, G., Henriksen, M. L., Friis, J. B.
, Pedersen, P. K. & Hinge, M. (2023).
In-line identification of Pb-based pigments in fishing nets and ropes based on hyperspectral imaging and machine learning.
Marine Pollution Bulletin,
191, [114910].
https://doi.org/10.1016/j.marpolbul.2023.114910
Abdolmaleki, H., Astri Bjørnetun Haugen, A., Buhl, K. B.
, Daasbjerg, K. & Agarwala, S. (2023).
Interfacial Engineering of PVDF‐TrFE toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applications.
Advanced Science,
10(6), [2205942].
https://doi.org/10.1002/advs.202205942
Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), [1786].
https://doi.org/10.3390/electronics12081786
Jørgensen, S. D.
, Kidmose, P., Mikkelsen, K., Blech, M., Hemmsen, M. C., Rank, M. L. & Kjaer, T. W. (Accepted/In press).
Long-term ear-EEG monitoring of sleep – A case study during shift work.
Journal of Sleep Research.
https://doi.org/10.1111/jsr.13853
Khezri, R., Razmi, P., Mahmoudi, A., Bidram, A.
& Khooban, M. H. (2023).
Machine Learning-based Sizing of a Renewable-Battery System for Grid-Connected Homes with Fast-Charging Electric Vehicle.
IEEE Transactions on Sustainable Energy,
14(2), 837-848.
https://doi.org/10.1109/TSTE.2022.3227003
Hageman, K., Feal, A., Gamba, J., Girish, A., Bleier, J., Lindorfer, M., Tapiador, J. & Vallina-Rodriguez, N. (2023).
Mixed Signals: Analyzing Software Attribution Challenges in the Android Ecosystem.
IEEE Transactions on Software Engineering,
49(4), 2964-2979.
https://doi.org/10.1109/TSE.2023.3236582