Brusatori, M. F., Duplat, D. N., Degli-Eredi, I., Nielsen, L., Tønning, P. L., Castera, P.
, Volet, N. & Heck, M. J. R. (2022).
Ultralow-linewidth ring laser using hybrid integration and generic foundry platforms.
Optics Letters,
47(11), 2686-2689.
https://doi.org/10.1364/OL.457367
Bro Damsgaard, S.
, Hernandez Marcano, N. J., Nørremark, M., Jacobsen, R. H., Rodríguez, I. & Mogensen, P. (2022).
Wireless Communications for Internet of Farming: An Early 5G Measurement Study.
IEEE Access,
10, 105263-105277.
https://doi.org/10.1109/ACCESS.2022.3211096
Brandt, P., Grønvig, M.
, Rong, L., Zhang, G., Gautam, K. R., Kristensen, J. K. & Bjerg, B. (2022).
The effect of floor cooling on respiration rate and distribution of pigs in the pen.
Livestock Science,
257, Article 104832.
https://doi.org/10.1016/j.livsci.2022.104832
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (pp. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (pp. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Böttjer, T., Tola, D., Kakavandi, F., Wewer, C. R., Ramanujan, D., Gomes, C., Larsen, P. G. & Iosifidis, A. (2023).
A review of unit level digital twin applications in the manufacturing industry.
CIRP Journal of Manufacturing Science and Technology,
45, 162-189.
https://doi.org/10.1016/j.cirpj.2023.06.011
Bording, T. S., Asif, M. R., Barfod, A. S., Larsen, J. J., Zhang, B., Grombacher, D. J., Christiansen, A. V., Engebretsen, K. W., Pedersen, J. B., Maurya, P. K. & Auken, E. (2021).
Machine learning based fast forward modelling of ground-based time-domain electromagnetic data.
Journal of Applied Geophysics,
187, Article 104290.
https://doi.org/10.1016/j.jappgeo.2021.104290
Böhnert, T.
, Rezaeiyan, Y., Claro, M. S., Benetti, L., Jenkins, A. S.
, Farkhani, H., Moradi, F. & Ferreira, R. (2023).
Weighted spin torque nano-oscillator system for neuromorphic computing.
Nature Communication Engineering,
2, Article 65.
https://doi.org/10.1038/s44172-023-00117-9
Bogomolov, S., Fitzgerald, J., Foldager, F. F., Gamble, C.
, Larsen, P. G., Pierce, K., Stankaitis, P. & Wooding, B. (2021).
Tuning Robotti: the Machine-assisted Exploration of Parameter Spaces in Multi-Models of a Cyber-Physical System. In J. Fitzgerald, T. Oda & H. D. Macedo (Eds.),
Proceedings of the 18th International Overture Workshop (pp. 50-65)
https://arxiv.org/pdf/2101.07261.pdf
Bogomolov, S.
, Gomes, C., Isasa, C., Soudjani, S., Stankaitis, P.
& Wright, T. (2025).
Reachability analysis of FMI models using data-driven dynamic sensitivity.
Simulation,
101(5), 575-596.
https://doi.org/10.1177/00375497241261409
Bochtis, D., Sørensen, C. A. G., Jørgensen, R. N., Nørremark, M., Hameed, I. A. & Swain, K. C. (2011).
Robotic weed monitoring.
Acta Agriculturae Scandinavica, Section B - Soil & Plant Science,
61(3), 202-208.
https://doi.org/10.1080/09064711003796428
Bochtis, D. D., Sørensen, C. G., Fountas, S., Moysiadis, V. & Pardalos, P. M. (2022).
Preface.
Springer Optimization and its Applications,
184, v-xiii.
Bliddal, H.
, Christensen, C. B., Møller, C., Vuust, P. & Kidmose, P. (2021).
Neural correlates of beat perception measured using ear-EEG: Bringing EEG music studies into the concert hall . Poster session presented at Rhythm Production and Perception Workshop 2021, Oslo, Norway.
Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C. E., Mann, H. M. R. & Høye, T. T. (2022).
Accurate detection and identification of insects from camera trap images with deep learning. bioRxiv.
https://doi.org/10.1101/2022.10.25.513484