Dideriksen, A. K., Andersen, M. F., Priest, J., Forskov Eriksen, N.
, Frandsen, M. T., Melvad, C., Frejo Rasmussen, T., Kjeldgård Nielsen, N. H., Thorup Strømsnes, C., Juul Ahlebæk, M., Samsing, S., Buris Larsen, T.
, Don, J., Pedersen, L. A. N., Jacobsen, R. H., Rysgaard, S., Kim, J. M., Bayer, R., Christensen, C.
... Karoff, C. (2024).
DISCO-2 – an ambitious earth observing student CubeSat for arctic climate research.
Frontiers in Remote Sensing,
5.
https://doi.org/10.3389/frsen.2024.1474560
Kunrath, K., Leka, S., Vestergaard, L. S., Presser, M. & Ramanujan, D. (2024).
A Digital Tool for Scaffolding Innovation Learning in Engineering Education with Local Industry Needs.
International Journal of Engineering Education,
40(4), 801-814.
Huang, Q., Li, H., Liao, Y., Hao, Y.
& Zhou, P. (2024).
Noise-NeRF: Hide Information in Neural Radiance Field Using Trainable Noise. In M. Wand, J. Schmidhuber, M. Wand, K. Malinovská, J. Schmidhuber, I. V. Tetko & I. V. Tetko (Eds.),
Artificial Neural Networks and Machine Learning – ICANN 2024 - 33rd International Conference on Artificial Neural Networks, Proceedings (pp. 320-334). Springer.
https://doi.org/10.1007/978-3-031-72335-3_22
Liu, H., Yang, Y., Wu, Q., He, B., Liao, Y.
& Zhou, P. (2024).
FacGNN: Multi-faceted Fairness Enhancement for GNN through Adversarial and Contrastive Learning. In
2024 International Joint Conference on Neural Networks (IJCNN) IEEE.
https://doi.org/10.1109/IJCNN60899.2024.10649939
Tang, W., Cao, Y., Ying, J.
, Wang, B., Zhao, Y., Liao, Y.
& Zhou, P. (2024).
A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential. In L.-W. Ku, A. Martins & V. Srikumar (Eds.),
62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference (pp. 3670-3685). Association for Computational Linguistics (ACL).
Kretsis, A., Kokkinos, P., Varvarigos, E., Syrivelis, D., Bakopoulos, P., Sipos, M., Fehér, M.
, Lucani Rötter, D. E., Bernabe, J. M., Skarmeta, A., Paez, I., Cominardi, L., Mercier, M., Velho, P., Georgiou, Y., Mainas, C., Nanos, A., Martin, J., Fernandez Gomez, A. ... Chintamani, K. (2024).
EMPYREAN: Trustworthy, Cognitive and AI-driven Collaborative Associations of IoT Devices and Edge Resources for Data Processing. In
Proceedings of the 33rd International Symposium on High-Performance Parallel and Distributed Computing (pp. 385 - 388). Association for Computing Machinery.
https://doi.org/10.1145/3625549.3658814
Larsen, P. G., Fitzgerald, J.
, Gomes, C., Woodcock, J., Basagiannis, S., Ulisse, A.
, Esterle, L., Lucani Rötter, D. E., Hansen, S. T. & Oakes, B. J. (2024).
Future Directions and Challenges. In J. Fitzgerald, C. Gomes & P. G. Larsen (Eds.),
The Engineering of Digital Twins (pp. 363-386). Springer.
https://doi.org/10.1007/978-3-031-66719-0_15
Chen, G., Kobek-Kjeldager, C., Jensen, L. D., Kristensen, J. K., Kaiser, M., Thodberg, K., Zhang, G., Rong, L., Herskin, M. S. & Foldager, L. (2024).
Experimental study on temperature difference between the interior and exterior of the vehicle transporting weaner pigs.
Biosystems Engineering,
247, 119-131.
https://doi.org/10.1016/j.biosystemseng.2024.09.001
Marinoudi, V., Benos, L., Camacho Villa, C., Lampridi, M., Kateris, D., Berruto, R., Pearson, S.
, Sørensen, C. G. & Bochtis, D. (2024).
Adapting to the Agricultural Labor Market Shaped by Robotization.
Sustainability,
16(16), Article 7061.
https://doi.org/10.3390/su16167061
Tagarakis, A. C., Benos, L., Kyriakarakos, G., Pearson, S.
, Sørensen, C. G. & Bochtis, D. (2024).
Digital Twins in Agriculture and Forestry: A Review.
Sensors,
24(10), Article 3117.
https://doi.org/10.3390/s24103117
Nørremark, M., Kristensen, E. F., Jensen, M., Ottosen, C.-O., Petridis, A., Mendanha dos Santos, T., Melander, B. & Jensen, P. K. (2024).
Miljøpositivliste for producentorganisationers driftsfonde til støtteberettigede teknologier til frugt- og grøntsagssektoren 2024. Aarhus Universitet - DCA - Nationalt Center for Fødevarer og Jordbrug. Rådgivningsrapport fra DCA - Nationalt Center for Fødevarer og Jordbrug
Lee, L.-H., Hosio, S., Braud, T.
& Zhou, P. (2024).
A Roadmap Toward Metaversity: Recent Developments and Perspectives in Education. In D. Liu, R. Huang, A. H. S. Metwally, A. Tlili & E. Fan Lin (Eds.),
Application of the Metaverse in Education (pp. 73-95). Springer Nature.
https://doi.org/10.1007/978-981-97-1298-4_5
Zhou, P., Zhang, W., Braud, T., Hui, P. & Kangasharju, J. (2018).
ARVE: Augmented reality applications in vehicle to edge networks. In
MECOMM 2018 - Proceedings of the 2018 Workshop on Mobile Edge Communications, Part of SIGCOMM 2018 (pp. 25-30). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3229556.3229564
Zhou, P., Zhang, W., Braud, T., Hui, P. & Kangasharju, J. (2019).
Enhanced augmented reality applications in vehicle-to-edge networks. In A. Galis, R. Noldus, F. Idzikowski, F. Guillemin, S. Secci & M. F. Sayit (Eds.),
Proceedings of the 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops, ICIN 2019 (pp. 167-174). Article 8685872 Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICIN.2019.8685872
Wong, W., Corneo, L., Zavodovski, A.
, Zhou, P., Mohan, N. & Kangasharju, J. (2020).
Bricklayer: Resource Composition on the Spot Market. In
2020 IEEE International Conference on Communications, ICC 2020 - Proceedings Article 9149218 Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICC40277.2020.9149218
Zavodovski, A., Corneo, L., Johnsson, A., Mohan, N., Bayhan, S.
, Zhou, P., Wong, W. & Kangasharju, J. (2021).
Decentralizing Computation with Edge Computing: Potential and Challenges. In
IWCI 2021 - Proceedings of the 2021 ACM CoNEXT Interdisciplinary Workshop on (de)Centralization in the Internet, Part of ACM CoNEXT 2021 (pp. 34-36). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3488663.3493689
Hao, Y., Duan, J., Zhang, H., Zhu, B.
, Zhou, P. & He, X. (2022).
Unsupervised Video Hashing with Multi-granularity Contextualization and Multi-structure Preservation. In
MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia (pp. 3754-3763). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3503161.3547836
Hui, P., Kangasharju, J., Braud, T., Lee, L. H.
& Zhou, P. (2023).
Message from MetaSys '23 Chairs. In
MetaSys '23: Proceedings of the First Workshop on Metaverse Systems and Applications (pp. I). Association for Computing Machinery, Inc..
Zhou, P., Kortoci, P., Yau, Y. P., Finley, B., Wang, X., Braud, T., Lee, L. H., Tarkoma, S., Kangasharju, J. & Hui, P. (2022).
AICP: Augmented Informative Cooperative Perception.
IEEE Transactions on Intelligent Transportation Systems,
23(11), 22505-22518.
https://doi.org/10.1109/TITS.2022.3155175
Zhang, W., Lin, S., Bijarbooneh, F. H., Cheng, H. F., Braud, T.
, Zhou, P., Lee, L. H. & Hui, P. (2022).
EdgeXAR: A 6-DoF Camera Multi-Target Interaction Framework for MAR with User-friendly Latency Compensation.
Proceedings of the ACM on Human-Computer Interaction,
6(EICS), Article 152.
https://doi.org/10.1145/3532202
Zhou, P., Xu, H., Lee, L. H., Fang, P. & Hui, P. (2022).
Are You Left Out? Are you left out? an efficient and fair federated learning for personalized profiles onwearable devices of inferior networking conditions.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
6(2), Article 91.
https://doi.org/10.1145/3534585
Kortoçi, P., Liang, Y.
, Zhou, P., Lee, L. H., Mehrabi, A., Hui, P., Tarkoma, S. & Crowcroft, J. (2022).
Federated split GANs. In
FedEdge 2022 - Proceedings of the 2022 1st ACM Workshop on Data Privacy and Federated Learning Technologies for Mobile Edge Network (pp. 25-30). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3556557.3557953
Yang, Y., Yang, R., Peng, H., Li, Y., Li, T., Liao, Y.
& Zhou, P. (2023).
FedACK: Federated Adversarial Contrastive Knowledge Distillation for Cross-Lingual and Cross-Model Social Bot Detection. In
WWW '23: Proceedings of the ACM Web Conference 2023 (pp. 1314-1323). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3543507.3583500
Liang, Y., Kortoçi, P.
, Zhou, P., Lee, L. H., Mehrabi, A., Hui, P., Tarkoma, S. & Crowcroft, J. (2022).
Federated split GANs for collaborative training with heterogeneous devices[Formula presented].
Software Impacts,
14, Article 100436.
https://doi.org/10.1016/j.simpa.2022.100436
Shatilov, K., Alhilal, A., Braud, T., Lee, L. H.
, Zhou, P. & Hui, P. (2023).
Players are not Ready 101: A Tutorial on Organising Mixed-mode Events in the Metaverse. In
MetaSys 2023 - Proceedings of the 1st Workshop on Metaverse Systems and Applications, Part of MobiSys 2023 (pp. 14-20). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3597063.3597360
Li, J., Wang, H., Liu, Z.
, Zhou, P., Chen, X., Li, Q. & Hong, R. (2023).
Toward Optimal Real-Time Volumetric Video Streaming: A Rolling Optimization and Deep Reinforcement Learning Based Approach.
IEEE Transactions on Circuits and Systems for Video Technology,
33(12), 7870-7883.
https://doi.org/10.1109/TCSVT.2023.3277893
Han, B., Braud, T., Di Francesco, M., Gorlatova, M., Liu, L., Soros, G.
& Zhou, P. (2023).
Guest Editorial: Networking Challenges and Opportunities for Multi-UserXR and the Metaverse.
IEEE Network,
37(4), 10-11.
https://doi.org/10.1109/MNET.2023.10293246
Zhou, P., Lee, L. H., Liu, Z., Qiu, H., Braud, T., Ding, A. Y., Tarkoma, S. & Hui, P. (2023).
Metaverse for Connected and Automated Vehicles and Intelligent Transportation Systems [From the Guest Editors].
IEEE Vehicular Technology Magazine,
18(4), 19-21.
https://doi.org/10.1109/MVT.2023.3333444
Zavodovski, A., Bayhan, S., Mohan, N.
, Zhou, P., Wong, W. & Kangasharju, J. (2019).
DeCloud: Truthful decentralized double auction for edge clouds. In
Proceedings - 2019 39th IEEE International Conference on Distributed Computing Systems, ICDCS 2019 (pp. 2157-2167). Article 8885067 Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICDCS.2019.00212
Zhou, P., Braud, T., Zavodovski, A., Liu, Z., Chen, X., Hui, P. & Kangasharju, J. (2020).
Edge-Facilitated Augmented Vision in Vehicle-to-Everything Networks.
IEEE Transactions on Vehicular Technology,
69(10), 12187-12201. Article 9163287.
https://doi.org/10.1109/TVT.2020.3015127
Zhou, P., Chen, X., Liu, Z., Braud, T., Hui, P. & Kangasharju, J. (2021).
DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light Control in the IoV.
IEEE Transactions on Intelligent Transportation Systems,
22(4), 2262-2273. Article 9275391.
https://doi.org/10.1109/TITS.2020.3035841