Rashidi, A.
, Zamani, M., Mondal, T., Hosseini, S.
, Laursen, K., Corbett, B.
& Moradi, F. (2023).
Ultrasonically Powered and Controlled Microsystem for Dual-Wavelength Optogenetics With a Multiload Regulation Scheme.
IEEE Solid-State Circuits Letters,
6, 33-36.
https://doi.org/10.1109/LSSC.2023.3239601
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. I H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (red.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Pradeepkumar, J., Anandakumar, M., Kugathasan, V., Lalitharatne, T. D., De Silva, A. C.
& Kappel, S. L. (2021).
Decoding of Hand Gestures from Electrocorticography with LSTM Based Deep Neural Network. I
43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 (s. 420-423). Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/EMBC46164.2021.9630958
Pradeepkumar, J., Anandakumar, M., Kugathasan, V., Suntharalingham, D.
, Kappel, S. L., De Silva, A. C. & Edussooriya, C. U. S. (2024).
Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
32, 2893-2904.
https://doi.org/10.1109/TNSRE.2024.3438610
Potapenko, I.
, Thiesson, B., Kristensen, M., Hajari, J. N.
, Ilginis, T., Fuchs, J., Hamann, S. & la Cour, M. (2022).
Automated artificial intelligence-based system for clinical follow-up of patients with age-related macular degeneration.
Acta Ophthalmologica,
100(8), 927-936.
https://doi.org/10.1111/aos.15133
Phan, H.
, Mikkelsen, K., Chen, O. Y., Koch, P., Mertins, A. & De Vos, M. (2022).
SleepTransformer: Automatic Sleep Staging With Interpretability and Uncertainty Quantification.
IEEE Transactions on Biomedical Engineering,
69(8), 2456-2467.
https://doi.org/10.1109/TBME.2022.3147187
Phan, H.
, Lorenzen, K. P., Heremans, E., Chen, O. Y., Tran, M. C., Koch, P., Mertins, A., Baumert, M.
, Mikkelsen, K. B. & De Vos, M. (2023).
L-SeqSleepNet: Whole-cycle Long Sequence Modeling for Automatic Sleep Staging.
IEEE Journal of Biomedical and Health Informatics,
27(10), 4748-4757.
https://doi.org/10.1109/JBHI.2023.3303197
Pham, X. H., Bozcan, I., Sarabakha, A., Haddadin, S.
& Kayacan, E. (2021).
GateNet: An Efficient Deep Neural Network Architecture for Gate Perception Using Fish-Eye Camera in Autonomous Drone Racing. Afhandling præsenteret på 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prag, Tjekkiet.
https://sarabakha.info/files/papers/conference/IROS_2021.pdf
Pham, X. H., Heiß, M., Tran, D., Nguyen, M. A., Nguyen, A. Q.
& Kayacan, E. (2023).
ORB-Net: End-to-end Planning Using Feature-based Imitation Learning for Autonomous Drone Racing. I
ISR Europe 2023: 56th International Symposium on Robotics, in cooperation with Fraunhofer IPA September 26 – 27, 2023 in Stuttgart (s. 16-21). VDE Verlag GmbH.
https://ieeexplore.ieee.org/document/10363048
Peric, V. S., Baudette, M., Vanfretti, L., Gjerde, J. O. & Lovlund, S. (2014).
Implementation and testing of a real-time mode estimation algorithm using ambient PMU data. Afhandling præsenteret på 2014 Clemson University Power Systems Conference, PSC 2014, Clemson, SC, USA.
https://doi.org/10.1109/PSC.2014.6808116
Peric, V. S., Hamacher, T., Mohapatra, A., Christiange, F., Zinsmeister, D., Tzscheutschler, P., Wagner, U., Aigner, C. & Witzmann, R. (2020).
CoSES laboratory for combined energy systems at TU munich. I
2020 IEEE Power and Energy Society General Meeting, PESGM 2020 Artikel 9281442 IEEE Computer Society.
https://doi.org/10.1109/PESGM41954.2020.9281442
Pedersen, L., Wagner, S., Skov, H. & Sandager, P. (2023).
A Time Study for the Analysis of the Potential for the Automated Stepwise Screening Program for Preeclampsia at Week 12 of Gestation. I G. A. Papadopoulos, A. Achilleos, E. Pissaloux & R. Velázquez (red.),
ICT for Health, Accessibility and Wellbeing - 2nd International Conference, IHAW 2022, Revised Selected Papers (s. 189-199). Springer.
https://doi.org/10.1007/978-3-031-29548-5_13
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0
Park, C., Looney, D.
, Rehman, N. U., Ahrabian, A. & Mandic, D. P. (2013).
Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
21(1), 10-22.
https://doi.org/10.1109/tnsre.2012.2229296
Paredis, R.
, Gomes, C. & Vangheluwe, H. (2023).
A Family of Digital T Workflows and Architectures: Exploring Two Cases. I A. Smirnov, H. Panetto & K. Madani (red.),
Innovative Intelligent Industrial Production and Logistics: First International Conference, IN4PL 2020, Virtual Event, November 2-4, 2020, and Second International Conference, IN4PL 2021, Virtual Event, October 25-27, 2021, Revised Selected Papers (s. 93-109). Springer.
https://doi.org/10.1007/978-3-031-37228-5_6
Pajooh, B., Yildirim, B., Rouhi Ardeshiri, R., Gheisarnejad Chirani, M.
, Homayounzadeh, M. & Khooban, M. H. (2024).
Role of redox flow battery and AI-based controller in frequency regulation of weak microgrids.
Journal of Energy Storage,
84(Part B), Artikel 110904.
https://doi.org/10.1016/j.est.2024.110904
Oudshoorn, F. W., Bartzanas, T., Holden, N., Järvinen, M.
, Jensen, A. L., Lauwers , L., Vandaele, L., Guckt, T. V. D., Van Nuffel, A., Saeys, W.
& Grøn Sørensen, C. (2014).
ICT-AGRI Call 2 Mid-term Project Report: SILF: Smart Integrated Livestock Farming.
https://pureportal.ilvo.be/en/publications/ict-agri-call-2-mid-term-project-report-silf-smart-integrated-liv
Oshnoei, S., Aghamohammadi, M. R., Oshnoei , S., Sahoo, S.
, Fathollahidehkordi, A. & Khooban, M. H. (2023).
A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control.
Applied Energy,
343, Artikel 121233.
https://doi.org/10.1016/j.apenergy.2023.121233