Griffiths, M. P., Grombacher, D., Liu, L., Vang, M. Ø. & Larsen, J. J. (2022).
Forward Modeling Steady-State Free Precession in Surface NMR.
IEEE Geoscience and Remote Sensing Letters,
60, Artikel 4513510.
https://doi.org/10.1109/TGRS.2022.3221624
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0
Mohseni, S.-R., Jahanshahi Zeitouni, M., Parvaresh, A., Abrazeh, S.
, Gheisarnejad Chirani, M. & Khooban, M. H. (2023).
FMI real-time co-simulation-based machine deep learning control of HVAC systems in smart buildings: Digital-twins technology.
Transactions of the Institute of Measurement and Control,
45(4), 661-673.
https://doi.org/10.1177/01423312221119635
Sahana, G., Gebreyesus, G., Cheruiyot Bett , R., Kinyua, J., Roos, N., MBI Tanga, C., Mwikirize, C., Akol, R., Khamis, F. M.
, Karstoft, H., Bjerge, K., Nkirote Kunyanga , C.
, Hansen, L. S., Nielsen, H. M., Lund, M. S., Geoffrey, S., Walusimbi, S. & Nakimbugwe, D. (2024).
FLYgene: Advancing Sustainable Breeding Programs and Genomic Tools for Black Soldier Fly (Hermetia illucens) in Kenya and Uganda. I
Book of Abstracts of the 75th Annual Meeting of the European Federation of Animal Science (s. 633-633)
https://docs.eaap.org/boa/2024_Florence_EAAP_Book_Abstracts.pdf
Domini, D., Aguzzi, G.
, Esterle, L. & Viroli, M. (2024).
Field-Based Coordination for Federated Learning. I I. Castellani & F. Tiezzi (red.),
Coordination Models and Languages - 26th IFIP WG 6.1 International Conference, COORDINATION 2024, Held as Part of the 19th International Federated Conference on Distributed Computing Techniques, DisCoTec 2024, Proceedings (s. 56-74). Springer Science and Business Media Deutschland GmbH.
https://doi.org/10.1007/978-3-031-62697-5_4
Ding, Y., Zhang, S., Fan, B., Sun, W., Liao, Y.
& Zhou, P. Y. (2024).
FedLoCA: Low-Rank Coordinated Adaptation with Knowledge Decoupling for Federated Recommendations. I
RecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems (s. 690-700). Association for Computing Machinery, Inc..
https://doi.org/10.1145/3640457.3688112
Larsen, P. G., Fitzgerald, J.
, Woodcock, J., Gamble, C., Payne, R. & Pierce, K. (2018).
Features of Integrated Model-Based Co-modelling and Co-simulation Technology. I A. Cerone & M. Roveri (red.),
Software Engineering and Formal Methods - SEFM 2017 Collocated Workshops: DataMod, FAACS, MSE, CoSim-CPS, and FOCLASA, Revised Selected Papers (s. 377-390). Springer.
https://doi.org/10.1007/978-3-319-74781-1_26
Frasheri, M., Thule, C., Macedo, H. D., Lausdahl, K., Larsen, P. G. & Esterle, L. (2021).
Fault Injecting Co-simulations for Safety. 6-13. Afhandling præsenteret på 5th International Conference on System Reliability and Safety, Palermo, Italien.
https://doi.org/10.1109/ICSRS53853.2021.9660728
Ruf, F., Faurby, C. F. D., Paesani, S., Wang, Y.
, Nielsen, L., Midolo, L.
, Volet, N. & Heck, M. (2022).
Fast All-Optical Switches in Si3N4 Photonic Integrated Circuits for Single-Photon Routing. Poster session præsenteret på National Optics Congress, Aarhus, Danmark.
Kopler, I., Marchaim, U., Tikász, I. E., Opaliński, S., Kokin, E., Mallinger, K., Neubauer, T., Gunnarsson, S.
, Soerensen, C., Phillips, C. J. C. & Banhazi, T. (2023).
Farmers’ Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors.
Animals,
13(18), Artikel 2868.
https://doi.org/10.3390/ani13182868
Honoré, J. T., Rask, R. D.
& Wagner, S. R. (2023).
Fall Detection Combining Android Accelerometer and Step Counting Virtual Sensors. I G. A. Papadopoulos, A. Achilleos, E. Pissaloux & R. Velázquez (red.),
ICT for Health, Accessibility and Wellbeing - 2nd International Conference, IHAW 2022, Revised Selected Papers (s. 3-16). Springer.
https://doi.org/10.1007/978-3-031-29548-5_1
Banhazi, T., Banhazi, A., Tikasz, I. E., Palotay, S., Mallimger, K., Neubauer, T., Corpaci, L., Marchaim, U., Kopler, I., Opalinski, S., Olejnik, K., Kokin, E., Gunnarsson, S., Bjerre, T.
& Soerensen, C. (2024).
Facilitating PLF Technology Adoption in the Pig and Poultry Industries.
Studies in Agricultural Economics,
126(1), 43-49.
https://doi.org/10.7896/j.2725
Liu, H., Yang, Y., Wu, Q., He, B., Liao, Y.
& Zhou, P. (2024).
FacGNN: Multi-faceted Fairness Enhancement for GNN through Adversarial and Contrastive Learning. I
2024 International Joint Conference on Neural Networks (IJCNN) IEEE.
https://doi.org/10.1109/IJCNN60899.2024.10649939
Kulik, T., Talasila, P., Greco, P., Veneziano, G., Marguglio, A., Sutton, L. F.
, Larsen, P. G. & Macedo, H. D. (2021).
Extending the Formal Security Analysis of the HUBCAP sandbox. I H. D. Macedo, C. Thule & K. Pierce (red.),
Proceedings of the 19th International Overture Workshop (s. 36-50)
https://arxiv.org/abs/2110.09371
Bandaru, N., Reddy, C. V., Vallabhudasu, K., Vijayalakshmi, M., Raghava Reddy, K., Cheolho, B., Shim, J. & Aminabhavi, T. M. (2024).
Exploring the potential of MXene nanohybrids as high-performance anode materials for lithium-ion batteries.
Chemical Engineering Journal,
500, Artikel 157317.
https://doi.org/10.1016/j.cej.2024.157317
Chen, G., Kobek-Kjeldager, C., Jensen, L. D., Kristensen, J. K., Kaiser, M., Thodberg, K., Zhang, G., Rong, L., Herskin, M. S. & Foldager, L. (2024).
Experimental study on temperature difference between the interior and exterior of the vehicle transporting weaner pigs.
Biosystems Engineering,
247, 119-131.
https://doi.org/10.1016/j.biosystemseng.2024.09.001
Sepehrzad, R., Ghafourian, J., Hedayatnia, A., Al-Durrad, A.
& Khooban, M. H. (2023).
Experimental and developed DC microgrid energy management integrated with battery energy storage based on multiple dynamic matrix model predictive control.
Journal of Energy Storage,
74(Part A), Artikel 109282.
https://doi.org/10.1016/j.est.2023.109282
Oakes, B. J.
, Gomes, C., Larsen, P. G., Denil, J., Deantoni, J., Cambeiro, J. & Fitzgerald, J. (2023).
Examining Model Qualities and Their Impact on Digital Twins. I M. J. Blas & G. Alvarez (red.),
2023 Annual Modeling and Simulation Conference (ANNSIM) (s. 220-232). IEEE.
https://ieeexplore.ieee.org/document/10155350