Esterle, L., Montagna, S., Pianini, D., Aguzzi, G., Bellman, K. L., Ciatto, G., Contoli, C., Donati, M., Mariani, S., Rahmani, A., Savaglio, C., Storti, E., TaheriNejad, N., van der Sluis, O. & Wang, Z. (2024).
MADTECC 2024: 1st Workshop on Medical Applications with Digital Twins and Edge-cloud Continuum - Welcome and Committees. I
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (s. 30-31). IEEE.
https://doi.org/10.1109/PerComWorkshops59983.2024.10502899
Khezri, R., Razmi, P., Mahmoudi, A., Bidram, A.
& Khooban, M. H. (2023).
Machine Learning-based Sizing of a Renewable-Battery System for Grid-Connected Homes with Fast-Charging Electric Vehicle.
IEEE Transactions on Sustainable Energy,
14(2), 837-848.
https://doi.org/10.1109/TSTE.2022.3227003
Bording, T. S., Asif, M. R., Barfod, A. S., Larsen, J. J., Zhang, B., Grombacher, D. J., Christiansen, A. V., Engebretsen, K. W., Pedersen, J. B., Maurya, P. K. & Auken, E. (2021).
Machine learning based fast forward modelling of ground-based time-domain electromagnetic data.
Journal of Applied Geophysics,
187, Artikel 104290.
https://doi.org/10.1016/j.jappgeo.2021.104290
Deutch, F., Weiss, M. G., Wagner, S. R., Hansen, L. S., Larsen, F., Figueiredo, C., Moers, C.
& Keller, A. K. (2025).
Machine-Learning-Based Activity Tracking for Individual Pig Monitoring in Experimental Facilities for Improved Animal Welfare in Research.
Sensors,
25(3), Artikel 785.
https://doi.org/10.3390/s25030785
Faraji, B., Gheisarnejad, M., Rouhollahi, K., Esfahani, Z.
& Khooban, M. H. (2021).
Machine Learning Approach based on Ultra-Local Model Control for Treating Cancer Pain.
I E E E Sensors Journal,
21(6), 8245-8252. Artikel 9285309.
https://doi.org/10.1109/JSEN.2020.3042937
Wu, Q. F., Jochum, M.
, Avery, J. E., Vettoretti, G. & Nuterman, R. (2025).
Machine Guided Derivation of the Atlantic Meridional Overturning Circulation (AMOC) Strength.
Geophysical Research Letters,
52(3), Artikel e2024GL113454.
https://doi.org/10.1029/2024GL113454
Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Artikel 1786.
https://doi.org/10.3390/electronics12081786
Phan, H.
, Lorenzen, K. P., Heremans, E., Chen, O. Y., Tran, M. C., Koch, P., Mertins, A., Baumert, M.
, Mikkelsen, K. B. & De Vos, M. (2023).
L-SeqSleepNet: Whole-cycle Long Sequence Modeling for Automatic Sleep Staging.
IEEE Journal of Biomedical and Health Informatics,
27(10), 4748-4757.
https://doi.org/10.1109/JBHI.2023.3303197
Ruf, F., Nielsen, L., Balauroiu, M., Volet, N. & Heck, M. (2022).
Low-loss all-optical ns-switching for single-photon routing in scalable integrated quantum photonics. I R. G. Baets, P. O'Brien & L. Vivien (red.),
Integrated Photonics Platforms II Artikel 12148-6 SPIE - International Society for Optical Engineering.
https://doi.org/10.1117/12.2621540
Kumar, R. R., Hänsel, A., Castera, P.
, Volet, N. & Heck, M. J. R. (2024).
Low-kappa DBR grating filters on an InP generic photonic integration foundry platform.
Journal of the Optical Society of America B: Optical Physics,
41(4), 1054-1059.
https://doi.org/10.1364/JOSAB.518800
Musaeus, C. S., Waldemar, G., Andersen, B. B., Høgh, P.
, Kidmose, P., Hemmsen, M. C., Rank, M. L., Kjær, T. W. & Frederiksen, K. S. (2022).
Long-Term EEG Monitoring in Patients with Alzheimer's Disease Using Ear-EEG: A Feasibility Study.
Journal of Alzheimer's Disease,
90(4), 1713-1723.
https://doi.org/10.3233/JAD-220491
Jørgensen, S. D.
, Kidmose, P., Mikkelsen, K., Blech, M., Hemmsen, M. C., Rank, M. L. & Kjaer, T. W. (2023).
Long-term ear-EEG monitoring of sleep – A case study during shift work.
Journal of Sleep Research,
32(5), Artikel e13853.
https://doi.org/10.1111/jsr.13853
Laakom, F., Raitoharju, J.
, Iosifidis, A. & Gabbouj, M. (2023).
Learning Distinct Features Helps, Provably. I D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis & F. Bonchi (red.),
Machine Learning and Knowledge Discovery in Databases: Research Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part II (s. 206-222). Springer.
https://doi.org/10.1007/978-3-031-43415-0_13
Marinoudi, V., Benos, L., Villa, C. C., Kateris, D., Berruto, R., Pearson, S.
, Sørensen, C. G. & Bochtis, D. (2024).
Large language models impact on agricultural workforce dynamics: Opportunity or risk? Smart Agricultural Technology,
9, Artikel 100677.
https://doi.org/10.1016/j.atech.2024.100677
Nørremark, M., Hansen, M. J., Børsting, C. F., Ottosen, C.-O. & Jensen, P. K., (2023).
Landbrugsteknisk hjælp til besvarelse af høringssvar til Miljø- og klimateknologi 2023, Nr. 2023-0543309, 41 s., sep. 19, 2023. Rådgivningsnotat fra DCA - Nationalt Center for Fødevarer og Jordbrug
Yalsavar, M., Karimaghaee, P., Sheikh-Akbari, A.
, Khooban, M. H., Dehmeshki, J. & Al-Majeed, S. (2022).
Kernel Parameter Optimization for Support Vector Machine Based on Sliding Mode Control.
IEEE Access,
10, 17003-17017.
https://doi.org/10.1109/ACCESS.2022.3150001
Amiri, M., Dehghani, M., Khayatian, A., Mohammadi, M.
, Vafamand, N. & Boudjadar, J. (2021).
Investigation of Wind Energy Impact on Power Systems Stability Using Lyapunov Exponents. I H. Selvaraj, G. Chmaj & D. Zydek (red.),
Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020 (s. 12-22). Springer.
https://doi.org/10.1007/978-3-030-65796-3_2