Nyholm Jørgensen, R., Laursen, M. S., Teimouri, N., Madsen, S. L., Dyrmann, M., Somerville, G. J. & Mathiassen, S. K. (2019).
RoboWeedMaps - Automated weed detection and mapping - Invited talk at SSWM 2019, SDU, Odense Denmark. Pictures, Video and sound recordings (digital), YouTube.
Skovsen, S., Laursen, M. S., Gislum, R., Eriksen, J., Dyrmann, M., Mortensen, A. K., Farkhani, S., Karstoft, H., Jensen, N.-P.
& Nyholm Jørgensen, R. (2019).
Species distribution mapping of grass clover leys using images for targeted nitrogen fertilization. In J. V. Stafford (Ed.),
Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (pp. 639-645). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_79
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Dataset
https://vision.eng.au.dk/grass-clover-dataset/
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Poster session presented at IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, California, United States.
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops IEEE.
http://openaccess.thecvf.com/content_CVPRW_2019/html/CVPPP/Skovsen_The_GrassClover_Image_Dataset_for_Semantic_and_Hierarchical_Species_Understanding_CVPRW_2019_paper.html
Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P.
, Dyrmann, M., Andersen, P., Jensen, N.-P. & Green, O. (2019).
Marrying futuristic weed mapping with current herbicide sprayer capacities. In J. V. Stafford (Ed.),
Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (pp. 231-237). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_28
Christiansen, M. P., Laursen, M. S., Feld Mikkelsen, B.
, Nyholm Jørgensen, R., Teimouri, N. & Sørensen, C. A. G. (2018).
Current potentials and challenges using Sentinel-1 for broadacre field remote sensing. In
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 56). Wageningen University.
https://doi.org/10.18174/471678
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Korthals, T.
, Kragh, M. F., Christiansen, P., Karstoft, H., Nyholm Jørgensen, R. & Rückert, U. (2018).
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation.
Frontiers in Robotics and AI,
5(MAR), Article 28.
https://doi.org/10.3389/frobt.2018.00028
Larsen, D.
, Skovsen, S., Steen, K. A., Grooters, K.
, Eriksen, J., Green, O.
& Nyholm Jørgensen, R. (2018).
Autonomous Mapping of Grass-Clover Ratio Based on Unmanned Aerial Vehicles and Convolutional Neural Networks. In
Proceedings of the 14th International Conference on Precision Agriculture Article 5107 International Society of Precision Agriculture.
https://www.ispag.org/proceedings/?action=download&item=5107
Larsen, D., Steen, K. A.
, Skovsen, S., Grooters, K., Eriksen, J.
, Nyholm Jørgensen, R., Dyrmann, M. & Green, O. (2018).
Semantic Segmentation of Clover-Grass Images using Images from Commercially Available Drones. In P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum & N. J. Ros (Eds.),
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 110). Wageningen University.
https://doi.org/10.18174/471678
Madsen, S. L., Dyrmann, M., Laursen, M. S., Mathiassen, S. K. & Nyholm Jørgensen, R. (2018).
Data Acquisition Platform for Collecting High-Quality Images of Cultivated Weed. In P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. van Oostrum & N. Ros (Eds.),
Proceedings of the European Conference on Agricultural Engineering: AgEng2018 (pp. 360-369). Wageningen University.
https://doi.org/10.18174/471679
Mortensen, A. K., Bender, A., Whelan, B., Barbour, M. M., Sukkarieh, S.
, Karstoft, H. & Gislum, R. (2018).
Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation.
Computers and Electronics in Agriculture,
154, 373-381.
https://doi.org/10.1016/j.compag.2018.09.010
Rydahl, P., Bojer, O. M.
, Jorgensen, R. N., Dyrmann, M., Andersen, P., Jensen, N. & Sorensen, M. (2018).
Spatial variability of optimized herbicide mixtures and dosages. In
Proceedings 14th International Conference on Precision Agriculture (ICPA2018) (pp. 1-14). Article 5040 International Society of Precision Agriculture.
https://www.ispag.org/proceedings/?action=abstractid=5040
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. In
Proceedings of the 14th International Conference on Precision Engineering Article 5079 International Society of Precision Agriculture.
https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
https://ispag.org/proceedings/?action=abstract&id=5079&search=authors
Steen, K. A., Grooters, K., Høilund, C., Rasmussen, J.
, Nyholm Jørgensen, R., Dyrmann, M. & Green, O. (2018).
Automated Weed Intensity Mapping. In G. K. P.W.G. , C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein , C. G. van Oostrum & N. J. Ros (Eds.),
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 109). Wageningen University.
https://doi.org/10.18174/471678
Steen, K. A., Delebasse, S., Grooters, K., Høilund, C.
, Dyrmann, M., Skovsen, S., Nyholm Jørgensen, R. & Green, O. (2018).
In-field Potato Diseases Detection. In P. W. G. Groot Koerkamp, C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum & N. J. Ros (Eds.),
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 111). Wageningen University.
https://doi.org/10.18174/471678
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009
Teimouri, N., Dyrmann, M., Nielsen, P. R.
, Mathiassen, S. K., Somerville, G. J. & Jørgensen, R. N. (2018).
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks.
Sensors,
18(5), Article 1580.
https://doi.org/10.3390/s18051580
Christiansen, M. P., Laursen, M. S., Nyholm Jørgensen, R., Skovsen, S. & Gislum, R. (2017).
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Sensors,
17(12), Article 2703.
https://doi.org/10.3390/s17122703
Christiansen, P., Kragh, M. F., Steen, K. A., Karstoft, H. & Nyholm Jørgensen, R. (2017).
Platform for evaluating sensors and human detection in autonomous mowing operations.
Precision Agriculture,
18(3), 350-365.
https://doi.org/10.1007/s11119-017-9497-6
Jeppesen, J. H., Jacobsen, R. H., Nyholm Jørgensen, R., Halberg, A.
& Toftegaard, T. S. (2017).
Identification of High-Variation Fields based on Open Satellite Imagery.
Advances in Animal Biosciences,
8(2), 388-393.
https://doi.org/10.1017/S2040470017000693
Kragh, M. F., Christiansen, P., Laursen, M. S., Larsen, M., Steen, K. A.
, Green, O., Karstoft, H. & Jørgensen, R. N. (2017).
FieldSAFE: Dataset for Obstacle Detection in Agriculture.
Sensors,
17(11), Article 2579.
https://doi.org/10.3390/s17112579