Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Article 1786.
https://doi.org/10.3390/electronics12081786
Alvarez Tunon, O., Kanner, H.
, Ribeiro Marnet, L., Pham, X. H., Sejersen, J. L. F., Brodskiy, Y.
& Kayacan, E. (2023).
MIMIR-UW: A Multipurpose Synthetic Dataset for Underwater Navigation and Inspection. In
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6141-6148). IEEE.
https://doi.org/10.1109/IROS55552.2023.10341436
Pham, X. H., Heiß, M., Tran, D., Nguyen, M. A., Nguyen, A. Q.
& Kayacan, E. (2023).
ORB-Net: End-to-end Planning Using Feature-based Imitation Learning for Autonomous Drone Racing. In
ISR Europe 2023: 56th International Symposium on Robotics, in cooperation with Fraunhofer IPA September 26 – 27, 2023 in Stuttgart (pp. 16-21). VDE Verlag GmbH.
https://ieeexplore.ieee.org/document/10363048
Shabani, M., Magris, M., Tzagkarakis, G., Kanniainen, J.
& Iosifidis, A. (2023).
Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots.
Neural Computing and Applications,
35(25), 18519–18531.
https://doi.org/10.1007/s00521-023-08674-y
Baltakys, K., Baltakienė, M.
, Heidari, N., Iosifidis, A. & Kanniainen, J. (2023).
Predicting the trading behavior of socially connected investors: Graph neural network approach with implications to market surveillance.
Expert Systems with Applications,
228, Article 120285.
https://doi.org/10.1016/j.eswa.2023.120285
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. In H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (Eds.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Jensen, M. H., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S. E., Simonsen, C. Z., Grønhøj, M. H., Rom Poulsen, F.
, Rehman, N. U. & Korshoej, A. R. (2023).
Reliability and Performance of the IRRAflow® System for Intracranial Lavage and Evacuation of Hematomas - A Technical Note.
https://doi.org/10.1101/2023.07.07.23292372
Iqbal, S.
, Naveed, K., Naqvi, S. S., Naveed, A. & Khan, T. M. (2023).
Robust retinal blood vessel segmentation using a patch-based statistical adaptive multi-scale line detector.
Digital Signal Processing: A Review Journal,
139, Article 104075.
https://doi.org/10.1016/j.dsp.2023.104075
Liu, L., Grombacher, D., Griffiths, M., Vang, M. & Larsen, J. J. (2023).
Signal Processing Steady-State Surface NMR Data.
IEEE Transactions on Instrumentation and Measurement,
72, Article 6502313.
https://doi.org/10.1109/TIM.2023.3264033
Vang, M., Grombacher, D., Griffiths, M. P., Liu, L. & Larsen, J. J. (2023).
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance - three Danish case studies.
Hydrology and Earth System Sciences,
27(16), 3115-3124.
https://doi.org/10.5194/hess-27-3115-2023
Kakavandi, F., Gomes, C., de Reus, R., Badstue, J.
, Jensen, J. L., Larsen, P. G. & Iosifidis, A. (2023).
Towards Developing a Digital Twin for a Manufacturing Pilot Line: An Industrial Case Study. In E. Karaarslan, Ö. Aydin, Ü. Cali & M. Challenger (Eds.),
Digital Twin Driven Intelligent Systems and Emerging Metaverse (pp. 39-64). Springer.
https://doi.org/10.1007/978-981-99-0252-1_2
Dobbs, A. M., Ginn, D.
, Skovsen, S. K., Yadav, R., Jha, P., Bagavathiannan, M. V., Mirsky, S. B., Reberg-Horton, C. S. & Leon, R. G. (2023).
Using structure-from-motion to estimate cover crop biomass and characterize canopy structure.
Field Crops Research,
302, Article 109099.
https://doi.org/10.1016/j.fcr.2023.109099
Malik, J., Kiranyaz, S., Al-Raoush, R. I., Monga, O., Garnier, P., Foufou, S., Bouras, A.
, Iosifidis, A., Gabbouj, M. & Baveye, P. C. (2022).
3D Quantum Cuts for Automatic Segmentation of Porous Media in Tomography Images.
Computers & Geosciences,
159, Article 105017.
https://doi.org/10.1016/j.cageo.2021.105017
Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S.
, Bjerge, K., Madsen, S. A., Jeppesen, M. R. & Melvad, C. (2022).
Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ,
10, Article e13837.
https://doi.org/10.7717/peerj.13837
Rysgaard, S., Bjerge, K., Boone, W., Frandsen, E., Graversen, M.
, Thomas Høye, T., Jensen, B., Johnen, G.
, Antoni Jackowicz-Korczynski, M., Taylor Kerby, J., Kortegaard, S.
, Mastepanov, M., Melvad, C., Schmidt Mikkelsen, P., Mortensen, K., Nørgaard, C.
, Poulsen, E., Riis, T., Sørensen, L. & Røjle Christensen, T. (2022).
A mobile observatory powered by sun and wind for near real time measurements of atmospheric, glacial, terrestrial, limnic and coastal oceanic conditions in remote off-grid areas.
HardwareX,
12, Article e00331.
https://doi.org/10.1016/j.ohx.2022.e00331
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G.
, Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data.
IEEE Transactions on Geoscience and Remote Sensing,
60, Article 4503610.
https://doi.org/10.1109/TGRS.2021.3076121
Griffiths, M., Grombacher, D., Kass, M. A., Liu, L., Vang, M. & Larsen, J. J. (2022).
A Reformulated Surface Nmr Forward For Multi-Sequence Acquisitions. In
28th European Meeting of Environmental and Engineering Geophysics, Held at the Near Surface Geoscience Conference and Exhibition 2022, NSG 2022 European Association of Geoscientists and Engineers.
https://doi.org/10.3997/2214-4609.202220109
Kass, M. A., Grombacher, D., Griffiths, M., Vang, M. Ø., Liu, L. & Larsen, J. J. (2022).
A steady-state approach to surface nuclear magnetic resonance. In
Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP (pp. 54). J and N Group, Ltd..
https://www.eegs.org/assets/docs/Symposium/2022SAGEEP/AbstractsbyAuthor/Kass%2C%20A%20STEADY-STATE%20APPROACH%20TO%20SURFACE%20NUCLEAR%20MAGNETIC%20RESONANCE%20-%20SAGEEP%202022%20-%20205367449.pdf
Tran, D. T., Passalis, N., Tefas, A., Gabbouj, M.
& Iosifidis, A. (2022).
Attention-Based Neural Bag-of-Features Learning for Sequence Data.
IEEE Access,
10, 45542-45552.
https://doi.org/10.1109/ACCESS.2022.3169776
Asif, M. R., Maurya, P. K., Foged, N., Larsen, J. J., Auken, E. & Christiansen, A. V. (2022).
Automated transient electromagnetic data processing for ground-based and airborne systems by a deep learning expert system.
IEEE Transactions on Geoscience and Remote Sensing,
60, Article 5919814.
https://doi.org/10.1109/TGRS.2022.3202304
Mann, H. M. R., Iosifidis, A., Jepsen, J. U., Welker, J. M., Loonen, M. J. J. E.
& Høye, T. T. (2022).
Automatic flower detection and phenology monitoring using time-lapse cameras and deep learning.
Remote Sensing in Ecology and Conservation,
8(6), 765-777.
https://doi.org/10.1002/rse2.275
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (pp. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49