Letafat, A.
, Rafiei Foroushani, M., Sheikh, M., Afshari-Igder, M.
, Banaei, M., Boudjadar, J. & Khooban, M. H. (2020).
Simultaneous energy management and optimal components sizing of a zero-emission ferry boat.
Journal of Energy Storage,
28, Article 101215.
https://doi.org/10.1016/j.est.2020.101215
Hansen, O. L. P., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2020).
Species-level image classification with convolutional neural network enables insect identification from habitus images.
Ecology and Evolution,
10(2), 737-747.
https://doi.org/10.1002/ece3.5921
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal Bag-of-Features Learning for Predicting Mid Price Movements using High Frequency Limit Order Book Data.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(6), 774-785.
https://doi.org/10.1109/TETCI.2018.2872598
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data.
Pattern Recognition Letters,
136, 183-189.
https://doi.org/10.1016/j.patrec.2020.06.006
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Using Deep Learning for price prediction by exploiting stationary limit order book features.
Applied Soft Computing Journal,
93, Article 106401.
https://doi.org/10.1016/j.asoc.2020.106401
Bjerge, K., Frigaard, C. E., Mikkelsen, P. H., Nielsen, T. H., Misbih, M. & Kryger, P. (2019).
A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony.
Computers and Electronics in Agriculture,
164(September), Article 104898.
https://doi.org/10.1016/j.compag.2019.104898
Khawaja, A., Khan, T. M., Naveed, K., Naqvi, S. S.
, Rehman, N. U. & Nawaz, S. J. (2019).
An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser.
IEEE Access,
7, 164344-164361.
https://doi.org/10.1109/access.2019.2953259
Saleem, S., Naqvi, S. S., Manzoor, T., Saeed, A.
, Rehman, N. U. & Mirza, J. (2019).
A Strategy for Classification of "Vaginal vs. Cesarean Section" Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings.
Frontiers in Physiology,
10.
https://doi.org/10.3389/fphys.2019.00246
Ärje, J., Milioris, D., Tran, D. T., Jepsen, J. U., Raitoharju, J., Gabbouj, M.
, Iosifidis, A. & Høye, T. T. (2019).
Automatic Flower Detection and Classification System Uing a Light-Weight Convolutional Neural Network. In
27th European Signal Processing Conference EUSIPCO 2019 IEEE.
http://eusipco2019.org/Proceedings/papertitles.html
Gislum, R., Nyholm Jørgensen, R., Thomsen, I. K., Hansen, E. M. & Olesen, J. E., (2019).
Beskrivelse af setup for vidensindsamling og måling af NDVI-værdi i pilotprojekt om biomasse, No. 2019-760-001283, 3 p., Jul 03, 2019.
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. In
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (pp. 7545-7549). Article 8682297 IEEE.
https://doi.org/10.1109/ICASSP.2019.8682297
Ntakaris, A.
, Mirone, G., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Feature Engineering for Mid-Price Prediction with Deep Learning.
IEEE Access,
7, 82390 - 82412. Article 8743410.
https://doi.org/10.1109/ACCESS.2019.2924353
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2019).
Image data used for publication "Species-level image classification with convolutional neural network enable insect identification from habitus images". Dataset
https://doi.org/10.5281/zenodo.3549369
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24