Skovsen, S. K., Kutugata, M., Jennewein, J., Reberg-Horton, C. S. & Mirsky, S. B. (2023).
Detailed Species Competition Mapping of Mixed Cover Crop Species Using Tractor Mounted Color Camera and Computer Vision. Abstract from 2023 ASA/CSSA/SSSA International Annual Meeting, St. Louis, Missouri, United States.
Kayacan, E., Kaynak, O., H. Abiyev, R., Tørresen, J., Høvin, M. & Glette, K. (2010).
Design of an Adaptive Interval Type-2 Fuzzy Logic Controller for the Position Control of a Servo System with an Intelligent Sensor. In
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on (pp. 1125-1132). IEEE .
https://doi.org/10.1109/FUZZY.2010.5584629
Shahrak Nadimi, E., Andersson, K. J.
, Jørgensen, R. N., Maagaard, J.
, Mathiassen, S. K. & Christensen, S. (2009).
Designing, modeling and controlling a novel autonomous laser weeding system. In
Conference papers World Congress on Computers in Agriculture.
https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/H/Cs43IGGP/KP_dqty2y.5tv¶m2=HI/I/IGIK¶m3=HJG.IIL.IH.IK¶m4=29077
Christiansen, M. P., Laursen, M. S., Nyholm Jørgensen, R., Skovsen, S. & Gislum, R. (2017).
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Sensors,
17(12), Article 2703.
https://doi.org/10.3390/s17122703
Westh Nicolajsen, H., Ahola, T., Fleury, A. M., Milkova Ilieva, T., Eg Larsen, J., Larsen, L. B., G. Nikolakopoulos, I., Z. Patrikakis, C.
, Pedersen, C. F., Roswall, R., Schultz, N. & Tolstrup Sørensen, L. (2007).
Defining Usability of PN Services. Information Society Technologies, IST-FP6-IP-027396, My Personal Adaptive Global NET (MAGNET) Beyond, EU.
Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. In
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (pp. 6). J and N Group, Ltd..
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences (PNAS),
118(2), Article e2002545117.
https://doi.org/10.1073/pnas.2002545117
Christiansen, P., N. Nielsen, L., A. Steen, K.
, Nyholm Jørgensen, R. & Karstoft, H. (2016).
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.
Sensors,
16(11), Article 1904.
https://doi.org/10.3390/s16111904
Fountas, S., Blackmore, B. S., Vougioiukas, S., Tang, L.
, Sørensen, C. A. G. & Jørgensen, R. (2007).
Decomposition of Agricultural tasks into Robotic Behaviours.
Agricultural Engineering International: CIGR Journal,
IX.
http://cigr-ejournal.tamu.edu/submissions/volume9/PM%2007%20006%20Blackmore%20final%202Oct2007.pdf
Raza, M.
, Naveed, K., Akram, A., Salem, N., Afaq, A., Madni, H. A., Khan, M. A. U. & Mui-Zzud-din (2021).
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
PLOS ONE,
16(12), Article e0261698.
https://doi.org/10.1371/journal.pone.0261698
Madsen, S. L., Dyrmann, M., Laursen, M. S., Mathiassen, S. K. & Nyholm Jørgensen, R. (2018).
Data Acquisition Platform for Collecting High-Quality Images of Cultivated Weed. In P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. van Oostrum & N. Ros (Eds.),
Proceedings of the European Conference on Agricultural Engineering: AgEng2018 (pp. 360-369). Wageningen University.
https://doi.org/10.18174/471679
Hansen, B.
, Christiansen, A. V., Dalgaard, T., Jørgensen, F.
, Iversen, B. V., Larsen, J. J., Kjærgaard, C., Jacobsen, B. H.
, Auken, E., Hojberg, A. L.
& Schaper, S. (2020).
Danish review on advances in assessing: N retention in the subsurface in relation to future targeted N-regulation of agriculture. GEUS, Geological Survey of Denmark and Greenland. GEUS Rapport Vol. 2020 No. 11
https://mapfield.dk/media/21858/d26_synthesis_report_mapfield.pdf
Christiansen, M. P., Laursen, M. S., Feld Mikkelsen, B.
, Nyholm Jørgensen, R., Teimouri, N. & Sørensen, C. A. G. (2018).
Current potentials and challenges using Sentinel-1 for broadacre field remote sensing. In
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 56). Wageningen University.
https://doi.org/10.18174/471678
Qiao, Z.
, Pham, X. H., Ramasamy, S., Jiang, X.
, Kayacan, E. & Sarabakha, A. (2024).
Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing. In
2024 International Joint Conference on Neural Networks, IJCNN 2024 - Proceedings IEEE.
https://doi.org/10.1109/ijcnn60899.2024.10649903
Looney, D.
, Rehman, N. U., Mandic, D., Rutkowski, T. M., Heidenreich, A. & Beyer, D. (2009).
Conditioning multimodal information for smart environments. In
2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) IEEE.
https://doi.org/10.1109/icdsc.2009.5289373
Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C.
& Gebreyesus, G. (2024).
Computer-vision based prediction of body traits and larval sex in black soldier fly. Abstract from Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Nawoya, S., Ssemakula, F., Akol, R.
, Geissmann, Q., Karstoft, H., Bjerge, K., Mwikirize, C., Katumba, A.
& Gebreyesus, G. (2024).
Computer vision and deep learning in insects for food and feed production: A review.
Computers and Electronics in Agriculture,
216, Article 108503.
https://doi.org/10.1016/j.compag.2023.108503
Meldgaard Madsen, L., Asif, M. R., Maurya, P. K., Kühl, A. K., Domenzain, D., Jensen, C., Martin, T., Bastani, M. & Persson, L. (2023).
Comparison of tTEM-IP and ERT-IP: Cases from Mine Tailing Sites in Sweden. Abstract from NSG2023 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh , United Kingdom.
https://doi.org/10.3997/2214-4609.202320114
Bravo, C., Huizinga, P.
, Jørgensen, R., Olsen, H. J., Søgaard, H. T., Moshou, D., Jørgensen, M. H.
, Christensen, S. & Ramon, H. (2004).
Comparison of 2 different weed detection systems by use of the API. In
AgEng 2004, Leuven, Belgium. Book of Abstracts, ISBN 90-76019-258, 310-311. Paper on CD, 8 pp. (pp. 8)
Christensen, S., Mouridsen, K., Wu, O., Hjort, N., Karstoft, H., Thomalla, G., Röther, J., Fiehler, J., Kucinski, T.
& Østergaard, L. (2009).
Comparison of 10 Perfusion MRI Parameters in 97 Sub 6 Hour Stroke Patients using Voxel based Receiver Operating Characteristics Analysis.
Stroke,
40(6), 2055-61.
https://doi.org/10.1161/STROKEAHA.108.546069