Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. In
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (pp. 6). J and N Group, Ltd..
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences (PNAS),
118(2), Article e2002545117.
https://doi.org/10.1073/pnas.2002545117
Christiansen, P., N. Nielsen, L., A. Steen, K.
, Nyholm Jørgensen, R. & Karstoft, H. (2016).
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.
Sensors,
16(11), Article 1904.
https://doi.org/10.3390/s16111904
Fountas, S., Blackmore, B. S., Vougioiukas, S., Tang, L.
, Sørensen, C. A. G. & Jørgensen, R. (2007).
Decomposition of Agricultural tasks into Robotic Behaviours.
Agricultural Engineering International: CIGR Journal,
IX.
http://cigr-ejournal.tamu.edu/submissions/volume9/PM%2007%20006%20Blackmore%20final%202Oct2007.pdf
Raza, M.
, Naveed, K., Akram, A., Salem, N., Afaq, A., Madni, H. A., Khan, M. A. U. & Mui-Zzud-din (2021).
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
PLOS ONE,
16(12), Article e0261698.
https://doi.org/10.1371/journal.pone.0261698
Madsen, S. L., Dyrmann, M., Laursen, M. S., Mathiassen, S. K. & Nyholm Jørgensen, R. (2018).
Data Acquisition Platform for Collecting High-Quality Images of Cultivated Weed. In P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. van Oostrum & N. Ros (Eds.),
Proceedings of the European Conference on Agricultural Engineering: AgEng2018 (pp. 360-369). Wageningen University.
https://doi.org/10.18174/471679
Hansen, B.
, Christiansen, A. V., Dalgaard, T., Jørgensen, F.
, Iversen, B. V., Larsen, J. J., Kjærgaard, C., Jacobsen, B. H.
, Auken, E., Hojberg, A. L.
& Schaper, S. (2020).
Danish review on advances in assessing: N retention in the subsurface in relation to future targeted N-regulation of agriculture. GEUS, Geological Survey of Denmark and Greenland. GEUS Rapport Vol. 2020 No. 11
https://mapfield.dk/media/21858/d26_synthesis_report_mapfield.pdf
Christiansen, M. P., Laursen, M. S., Feld Mikkelsen, B.
, Nyholm Jørgensen, R., Teimouri, N. & Sørensen, C. A. G. (2018).
Current potentials and challenges using Sentinel-1 for broadacre field remote sensing. In
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (pp. 56). Wageningen University.
https://doi.org/10.18174/471678
Qiao, Z.
, Pham, X. H., Ramasamy, S., Jiang, X.
, Kayacan, E. & Sarabakha, A. (2024).
Continual Learning for Robust Gate Detection under Dynamic Lighting in Autonomous Drone Racing. In
2024 International Joint Conference on Neural Networks, IJCNN 2024 - Proceedings IEEE.
https://doi.org/10.1109/ijcnn60899.2024.10649903
Looney, D.
, Rehman, N. U., Mandic, D., Rutkowski, T. M., Heidenreich, A. & Beyer, D. (2009).
Conditioning multimodal information for smart environments. In
2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) IEEE.
https://doi.org/10.1109/icdsc.2009.5289373
Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C.
& Gebreyesus, G. (2024).
Computer-vision based prediction of body traits and larval sex in black soldier fly. Abstract from Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Nawoya, S., Ssemakula, F., Akol, R.
, Geissmann, Q., Karstoft, H., Bjerge, K., Mwikirize, C., Katumba, A.
& Gebreyesus, G. (2024).
Computer vision and deep learning in insects for food and feed production: A review.
Computers and Electronics in Agriculture,
216, Article 108503.
https://doi.org/10.1016/j.compag.2023.108503
Meldgaard Madsen, L., Asif, M. R., Maurya, P. K., Kühl, A. K., Domenzain, D., Jensen, C., Martin, T., Bastani, M. & Persson, L. (2023).
Comparison of tTEM-IP and ERT-IP: Cases from Mine Tailing Sites in Sweden. Abstract from NSG2023 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh , United Kingdom.
https://doi.org/10.3997/2214-4609.202320114
Bravo, C., Huizinga, P.
, Jørgensen, R., Olsen, H. J., Søgaard, H. T., Moshou, D., Jørgensen, M. H.
, Christensen, S. & Ramon, H. (2004).
Comparison of 2 different weed detection systems by use of the API. In
AgEng 2004, Leuven, Belgium. Book of Abstracts, ISBN 90-76019-258, 310-311. Paper on CD, 8 pp. (pp. 8)
Christensen, S., Mouridsen, K., Wu, O., Hjort, N., Karstoft, H., Thomalla, G., Röther, J., Fiehler, J., Kucinski, T.
& Østergaard, L. (2009).
Comparison of 10 Perfusion MRI Parameters in 97 Sub 6 Hour Stroke Patients using Voxel based Receiver Operating Characteristics Analysis.
Stroke,
40(6), 2055-61.
https://doi.org/10.1161/STROKEAHA.108.546069
Asif, M. R., Kass, M. A., Herpe, M., Rawlinson, Z., Westerhoff, R.
, Larsen, J. J. & Christiansen, A. V. (2025).
Comparative analysis of deep learning and traditional airborne electromagnetic data processing: A case study.
Geophysics,
90(3), WA103-WA112.
https://doi.org/10.1190/geo2024-0282.1
Wagner, S. R., Stenner, R., Memon, M., Beevi, F. H. A. & Pedersen, C. F. (2014).
Common Ambient Assisted Living Home Platform for Seamless Care. Abstract from 8th International Conference on Pervasive Computing Technologies for Healthcare, Oldenburg, Germany.
Green, O., Schmidt, T., Pietrzkowski, R. P., Jensen, K.
, Larsen, M. & Nyholm Jørgensen, R. (2014).
Commercial Autonomous Agricultural Platform - Kongskilde Robotti. In
Proceedings of the Second International Conference on Robotics, Associated High-Technologies and Equipment for Agriculture and Forestry - RHEA 2014: New trends in mobile robotics, perception and actuation for agriculture and forestry (pp. 351-356)
https://www.semanticscholar.org/paper/Commercial-autonomous-agricultural-platform%3A-Green-Schmidt/c13e209be6e181138d081a5dc6751286cd67d2ad
Park, C., Looney, D.
, Rehman, N. U., Ahrabian, A. & Mandic, D. P. (2013).
Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
21(1), 10-22.
https://doi.org/10.1109/tnsre.2012.2229296