Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Article 1786.
https://doi.org/10.3390/electronics12081786
Asif, M. R., Qi, C., Wang, T., Sadiq Fareed, M. & Ali Reza, S. (2019).
License Plate Detection for Multi-national Vehicles: An Illumination Invariant Approach in Multi-lane Environment.
Computers & Electrical Engineering,
78, 132-147.
https://doi.org/10.1016/j.compeleceng.2019.07.012
Asif, M. R., Qi, C., Wang, T., Fareed, M. S. & Khan, S. (2019).
License plate detection for multi-national vehicles – a generalized approach.
Multimedia Tools and Applications,
78(24), 35585-35606.
https://doi.org/10.1007/s11042-019-08199-4
Kusk, K., Nielsen, D. B., Thylstrup, T., Rasmussen, N. H., Jørvang, J.
, Pedersen, C. F. & Wagner, S. R. (2012).
Lessons Learned From a Lightweight Context-Aware System for Achieving Reliable Home Blood Pressure Self-Measurements. Paper presented at NordiCHI 2012, The Nordic Conference on Human-Computer Interaction, Copenhagen, Denmark.
Iosifidis, A., Tefas, A., Nikolaidis, N. & Pitas, I. (2011).
Learning Human Identity Using View-Invariant Multi-view Movement Representation. In C. Vielhauer, J. Dittmann, A. Drygajlo, N. C. Juul & M. C. Fairhurst (Eds.),
Biometrics and ID Management: COST 2101 European Workshop, BioID 2011, Brandenburg (Havel), Germany, March 8-10, 2011. Proceedings (pp. 217-226). Springer.
https://doi.org/10.1007/978-3-642-19530-3_20
Laakom, F., Raitoharju, J.
, Iosifidis, A. & Gabbouj, M. (2023).
Learning Distinct Features Helps, Provably. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis & F. Bonchi (Eds.),
Machine Learning and Knowledge Discovery in Databases: Research Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part II (pp. 206-222). Springer.
https://doi.org/10.1007/978-3-031-43415-0_13
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Riabchenko, E., Meissner, K., Ahmad, I.
, Iosifidis, A., Tirronen, V., Gabbouj, M. & Kiranyaz, S. (2016).
Learned vs. Engineered Features for Fine-Grained Classification of Aquatic Macroinvertebrates. In
2016 23rd International Conference on Pattern Recognition, ICPR 2016 (pp. 2276-2281). Article 7899975 IEEE.
https://doi.org/10.1109/ICPR.2016.7899975
Beevi, F. H. A., Pedersen, C. F., Wagner, S. R. & Hallerstede, S. (2014).
Lateral Fall Detection via Events in Linear Prediction Residual of Acceleration. In C. Ramos, P. Novais, C. Ehrwein Nihan & J. M. Corchado Rodriguez (Eds.),
Ambient Intelligence - Software and Applications: 5th International Symposium on Ambient Intelligence (Vol. 291, pp. 201-208). Springer.
https://doi.org/10.1007/978-3-319-07596-9_22
Pedersen, C. F., Trier Lund, M., Vardinghus Nielsen, C., Fromberg, J., Sloth, S., Bay Velling, M., Staach, L. & Lorenzen, T. (2000).
Læring med IT: Novo Nordisk Projektet. Pictures, Video and sound recordings (digital), Novo Nordisk and The Danish Ministry of Education.