Malekian, R., Curran, K.
, Pedersen, C. F., Cao, B. & Qi, X. (2018).
Guest Editorial Special Issue on Sensor Technologies for Connected Cars: Devices, Systems and Modeling.
IEEE Sensors Journal,
18(12), 4775-4776.
https://doi.org/10.1109/JSEN.2018.2830478
Laakom, F., Raitoharju, J., Passalis, N.
, Iosifidis, A. & Gabbouj, M. (2022).
Graph Embedding with Data Uncertainty.
IEEE Access,
10, 24232-24239.
https://doi.org/10.1109/ACCESS.2022.3155233
Gautam, C., Tiwari, A., Mishra, P. K., Suresh, S.
, Iosifidis, A. & Tanveer, M. (2021).
Graph-Embedded Multi-Layer Kernel Ridge Regression for One-Class Classification.
Cognitive Computation,
13(2), 552-569.
https://doi.org/10.1007/s12559-020-09804-7
Pham, X. H., Bozcan, I., Sarabakha, A., Haddadin, S.
& Kayacan, E. (2021).
GateNet: An Efficient Deep Neural Network Architecture for Gate Perception Using Fish-Eye Camera in Autonomous Drone Racing. Paper presented at 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prag, Czech Republic.
https://sarabakha.info/files/papers/conference/IROS_2021.pdf
Nyholm Jørgensen, R., Sørensen, R. A., Laursen, M. S., Rasmussen, J. & Nielsen, J. (2017).
FutureCropping Generering af tidselkort med Pix4D, DeepLearning og QGIS 18AUG2017. Pictures, Video and sound recordings (digital), YouTube.
https://www.youtube.com/watch?v=3X8h4U4o2-o
Grombacher, D., Griffiths, M. P., Liu, L., Vang, M. & Larsen, J. J. (2022).
Frequency Shifting Steady-State Surface NMR Signals to Avoid Problematic Narrowband-Noise Sources.
Geophysical Research Letters,
49(7), Article e2021GL097402.
https://doi.org/10.1029/2021GL097402
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Griffiths, M. P., Grombacher, D., Liu, L., Vang, M. Ø. & Larsen, J. J. (2022).
Forward Modeling Steady-State Free Precession in Surface NMR.
IEEE Geoscience and Remote Sensing Letters,
60, Article 4513510.
https://doi.org/10.1109/TGRS.2022.3221624
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2017).
Forecasting Stock Prices from the Limit Order Book Using Convolutional Neural Networks. In
Proceedings - 2017 IEEE 19th Conference on Business Informatics, CBI 2017 (pp. 7-12). Article 8010701 IEEE.
https://doi.org/10.1109/CBI.2017.23
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0