Griffiths, M. P., Grombacher, D., Kass, M. A., Vang, M., Liu, L. & Larsen, J. J. (2023).
A surface NMR forward in a dot product.
Geophysical Journal International,
234(3), 2284-2290.
https://doi.org/10.1093/gji/ggad203
Asif, M. R., Foged, N., Bording, T. S., Larsen, J. J. & Christiansen, A. V. (2023).
DL-RMD: a geophysically constrained electromagnetic resistivity model database for deep learning applications.
Earth System Science Data,
15(3), 1389-1401.
https://doi.org/10.5194/essd-2022-345,
https://doi.org/10.5194/essd-15-1389-2023
Liu, L., Grombacher, D., Griffiths, M., Vang, M. & Larsen, J. J. (2023).
Signal Processing Steady-State Surface NMR Data.
IEEE Transactions on Instrumentation and Measurement,
72, Article 6502313.
https://doi.org/10.1109/TIM.2023.3264033
Vang, M., Grombacher, D., Griffiths, M. P., Liu, L. & Larsen, J. J. (2023).
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance - three Danish case studies.
Hydrology and Earth System Sciences,
27(16), 3115-3124.
https://doi.org/10.5194/hess-27-3115-2023
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G.
, Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data.
IEEE Transactions on Geoscience and Remote Sensing,
60, Article 4503610.
https://doi.org/10.1109/TGRS.2021.3076121
Kass, M. A., Grombacher, D., Griffiths, M., Vang, M. Ø., Liu, L. & Larsen, J. J. (2022).
A steady-state approach to surface nuclear magnetic resonance. In
Proceedings of the Symposium on the Application of Geophyics to Engineering and Environmental Problems, SAGEEP (pp. 54). J and N Group, Ltd..
https://www.eegs.org/assets/docs/Symposium/2022SAGEEP/AbstractsbyAuthor/Kass%2C%20A%20STEADY-STATE%20APPROACH%20TO%20SURFACE%20NUCLEAR%20MAGNETIC%20RESONANCE%20-%20SAGEEP%202022%20-%20205367449.pdf
Asif, M. R., Maurya, P. K., Foged, N., Larsen, J. J., Auken, E. & Christiansen, A. V. (2022).
Automated transient electromagnetic data processing for ground-based and airborne systems by a deep learning expert system.
IEEE Transactions on Geoscience and Remote Sensing,
60, Article 5919814.
https://doi.org/10.1109/TGRS.2022.3202304
Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. In
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (pp. 6). J and N Group, Ltd..
Larsen, J. J., Langhof, R. B.
, Kjær, M. W., Vang, M., Liu, L., Griffiths, M. & Grombacher, D. (2022).
Efficient processing of surface NMR data with spectral analysis.
Geophysical Journal International,
229(1), 286-298.
https://doi.org/10.1093/gji/ggab472
Griffiths, M. P., Grombacher, D., Liu, L., Vang, M. Ø. & Larsen, J. J. (2022).
Forward Modeling Steady-State Free Precession in Surface NMR.
IEEE Geoscience and Remote Sensing Letters,
60, Article 4513510.
https://doi.org/10.1109/TGRS.2022.3221624
Grombacher, D., Griffiths, M. P., Liu, L., Vang, M. & Larsen, J. J. (2022).
Frequency Shifting Steady-State Surface NMR Signals to Avoid Problematic Narrowband-Noise Sources.
Geophysical Research Letters,
49(7), Article e2021GL097402.
https://doi.org/10.1029/2021GL097402
Asif, M. R., Foged, N., Maurya, P. K., Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data.
Geophysics,
87(4), E177-E187.
https://doi.org/10.1190/geo2021-0335.1
McLachlan, P. J., Khare, S. K., Grombacher, D., Larsen, J. J., A. Christiensen, A. & Luria, J. C. Z. (2022).
On The Presence of Correlated Noise in Transient Electromagnetic (Tem) Monitoring Data. 1-5. Abstract from NSG2022 28th European Meeting of Environmental and Engineering Geophysics, Belgrade , Serbia.
https://doi.org/10.3997/2214-4609.202220119
McLachlan, P. J., Khare, S. K., Grombacher, D., Larsen, J. J., Christensen, A.
& Zamora Luria, J. C. (2022).
On The Presence of Correlated Noise in Transient Electromagnetic (Tem) Monitoring Data. In
NSG2022 28th European Meeting of Environmental and Engineering Geophysics (pp. 1-5). European Association of Geoscientists and Engineers.
https://doi.org/10.3997/2214-4609.202220119
Gaikwad, N., Liu, L., Griffiths, M. P., Vang, M. Ø., Grombacher, D. & Larsen, J. J. (2022).
Thermal Model of the Apsu Transmitter for Lightweight and Compact Heat Sink Design. 11-13. Abstract from The 8th International Workshop on Magnetic Resonance Sounding, Strasbourg, France.
https://mrs2021.sciencesconf.org/data/pages/proceedings_MRS2021_distrib_v2.pdf
Larsen, J. J., Griffiths, M., Vang, M., Liu, L. & Grombacher, D. (2021).
Apsu - A compact surface NMR instrument for groundwater investigations.
SEG Technical Program Expanded Abstracts,
2021-September, 3135-3139.
https://doi.org/10.1190/segam2021-3582046.1
Kass, M. A., Auken, E., Larsen, J. J. & Christiansen, A. V. (2021).
A towed magnetic gradiometer array for rapid, detailed imaging of utility, geological, and archaeological targets.
Geoscientific Instrumentation, Methods and Data Systems,
10(2), 313-323.
https://doi.org/10.5194/gi-10-313-2021
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E. & Larsen, J. J. (2021).
Effect of Data Pre-Processing on the Performance of Neural Networks for 1-D Transient Electromagnetic Forward Modeling.
IEEE Access,
9, 34635-34646.
https://doi.org/10.1109/ACCESS.2021.3061761
Bording, T. S., Asif, M. R., Barfod, A. S., Larsen, J. J., Zhang, B., Grombacher, D. J., Christiansen, A. V., Engebretsen, K. W., Pedersen, J. B., Maurya, P. K. & Auken, E. (2021).
Machine learning based fast forward modelling of ground-based time-domain electromagnetic data.
Journal of Applied Geophysics,
187, Article 104290.
https://doi.org/10.1016/j.jappgeo.2021.104290
Grombacher, D., Liu, L., Griffiths, M. P., Vang, M. & Larsen, J. J. (2021).
Steady-State Surface NMR for Mapping of Groundwater.
Geophysical Research Letters,
48(23), Article e2021GL095381.
https://doi.org/10.1029/2021GL095381
Osterman, G., Haldrup, J.
, Larsen, J. J., Auken, E. & Grombacher, D. (2020).
A cautionary tale: How phase compensation during surface nuclear magnetic resonance inversion conceals forward modelling errors.
Journal of Applied Geophysics,
173, Article 103905.
https://doi.org/10.1016/j.jappgeo.2019.103905
Larsen, J. J., Liu, L., Grombacher, D., Osterman, G. K. & Auken, E. (2020).
Apsu — A new compact surface nuclear magnetic resonance system for groundwater investigation.
Geophysics,
85(2), JM1-JM11.
https://doi.org/10.1190/geo2018-0779.1
Hansen, B.
, Christiansen, A. V., Dalgaard, T., Jørgensen, F.
, Iversen, B. V., Larsen, J. J., Kjærgaard, C., Jacobsen, B. H.
, Auken, E., Hojberg, A. L.
& Schaper, S. (2020).
Danish review on advances in assessing: N retention in the subsurface in relation to future targeted N-regulation of agriculture. GEUS, Geological Survey of Denmark and Greenland. GEUS Rapport Vol. 2020 No. 11
https://mapfield.dk/media/21858/d26_synthesis_report_mapfield.pdf
Asif, M. R., Bording, T. S., Barfod, A. A. S., Zhang, B., Larsen, J. J. & Auken, E. (2020).
Improving computational efficiency of forward modelling for ground-based time-domain electromagnetic data using neural networks. Abstract from EGU:General assembly 2020 , Vienna , Austria.
https://doi.org/10.5194/egusphere-egu2020-7067
Grombacher, D., Liu, L., Kass, M. A., Osterman, G., Fiandaca, G., Auken, E. & Larsen, J. J. (2020).
Inverting surface NMR free induction decay data in a voltage-time data space.
Journal of Applied Geophysics,
172, Article 103869.
https://doi.org/10.1016/j.jappgeo.2019.103869
Auken, E., Foged, N., Larsen, J. J., Lassen, K. V. T., Maurya, P. K., Møller Dath, S. & Eiskjær, T. T. (2019).
tTEM — A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface.
Geophysics,
84(1), E13-E22.
https://doi.org/10.1190/geo2018-0355.1