Pham, X. H., Heiß, M., Tran, D., Nguyen, M. A., Nguyen, A. Q.
& Kayacan, E. (2023).
ORB-Net: End-to-end Planning Using Feature-based Imitation Learning for Autonomous Drone Racing. In
ISR Europe 2023: 56th International Symposium on Robotics, in cooperation with Fraunhofer IPA September 26 – 27, 2023 in Stuttgart (pp. 16-21). VDE Verlag GmbH.
https://ieeexplore.ieee.org/document/10363048
Hassan, S., Ahmadieh Khanesar, M.
, Kayacan, E., jaafar, J. & Khosravi, A. (2016).
Optimal design of adaptive type-2 neuro-fuzzy systems: A review.
Applied Soft Computing,
44, 134-143.
https://doi.org/10.1016/j.asoc.2016.03.023
Van Beers, R., Gutierrez, L. L., Schenk, A., Nicolai, B.
, Kayacan, E. & Saeys, W. (2014).
Optical measurement techniques for the ripeness determination of Braeburn apples. In
Proceedings International Conference of Agricultural Engineering (pp. 1-7)
http://www.geyseco.es/geystiona/adjs/comunicaciones/304/C02000001.pdf
Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L.-C. & Nyholm Jørgensen, R. (2020).
Open Plant Phenotype Database of Common Weeds in Denmark.
Remote Sensing,
12(8), Article 1246.
https://doi.org/10.3390/rs12081246
McLachlan, P. J., Khare, S. K., Grombacher, D., Larsen, J. J., A. Christiensen, A. & Luria, J. C. Z. (2022).
On The Presence of Correlated Noise in Transient Electromagnetic (Tem) Monitoring Data. 1-5. Abstract from NSG2022 28th European Meeting of Environmental and Engineering Geophysics, Belgrade , Serbia.
https://doi.org/10.3997/2214-4609.202220119
McLachlan, P. J., Khare, S. K., Grombacher, D., Larsen, J. J., Christensen, A.
& Zamora Luria, J. C. (2022).
On The Presence of Correlated Noise in Transient Electromagnetic (Tem) Monitoring Data. In
NSG2022 28th European Meeting of Environmental and Engineering Geophysics (pp. 1-5). European Association of Geoscientists and Engineers.
https://doi.org/10.3997/2214-4609.202220119
Kayacan, E.
, Kayacan, E., Chen, I.-M., Ramon, H. & Saeys, W. (2018).
On The Comparison of Model-Based and Model-Free Controllers in Guidance, Navigation and Control of Agricultural Vehicles. In R. John, H. Hagras & O. Castillo (Eds.),
Studies in Fuzziness and Soft Computing (Vol. 362, pp. 49-73). Springer.
https://doi.org/10.1007/978-3-319-72892-6_3
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009
Grombacher, D., Griffiths, M. P., Vang, M. Ø., Kass, M. A. & Larsen, J. J. (2024).
Observation of spikelets in steady-state surface nuclear magnetic resonance data.
Geophysics,
89(2), J1-J8.
https://doi.org/10.1190/GEO2023-0145.1
Sarabakha, A., Imanberdiyev, N.
, Kayacan, E., Ahmadieh Khanesar, M. & Hagras, H. (2017).
Novel Levenberg-Marquardt Based Learning Algorithm for Unmanned Aerial Vehicles.
Information Sciences,
417, 361-380.
https://doi.org/10.1016/j.ins.2017.07.020