Alvarez Tunon, O., Kanner, H.
, Ribeiro Marnet, L., Pham, X. H., Sejersen, J. L. F., Brodskiy, Y.
& Kayacan, E. (2023).
MIMIR-UW: A Multipurpose Synthetic Dataset for Underwater Navigation and Inspection. In
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6141-6148). IEEE.
https://doi.org/10.1109/IROS55552.2023.10341436
Lochbrunner, S.
, Larsen, J. J., Shaffer, J. P., Schmitt, M., Schultz, T., Underwood, J. G. & Stolow, A. (2000).
Methods and applications of femtosecond time-resolved photoelectron spectroscopy.
Journal of Electron Spectroscopy and Related Phenomena,
112(1-3), 183-198.
https://doi.org/10.1016/S0368-2048(00)00212-7
Jørgensen, R., Sørensen, C. A. G., Søgaard, H. T., Kristensen, K., Green, O. & Christensen, S. (2007).
Methodology for a Labor Extensive and Semi-Automated Field Trial Design Using Autoguidance and Comventional Machinery. In J. V. Stafford (Ed.),
Ikke angivet (pp. 441-449). Wageningen Academic Publishers.
D'Inverno, G. A., Moradizadeh, S.
, Salavatidezfouli, S., Africa, P. C. & Rozza, G. (2025).
Mesh-informed Reduced Order Models for aneurysm rupture risk prediction.
Journal of Computational and Applied Mathematics,
470, Article 116727.
https://doi.org/10.1016/j.cam.2025.116727
Lang, X.
, Rehman, N. U., Zhang, Y., Xie, L. & Su, H. (2020).
Median ensemble empirical mode decomposition.
Signal Processing,
176, Article 107686.
https://doi.org/10.1016/j.sigpro.2020.107686
Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P.
, Dyrmann, M., Andersen, P., Jensen, N.-P. & Green, O. (2019).
Marrying futuristic weed mapping with current herbicide sprayer capacities. In J. V. Stafford (Ed.),
Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (pp. 231-237). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_28
Dobbs, A. M., Goldsmith, A. S., Ginn, D.
, Skovsen, S. K., Bagavathiannan, M. V., Mirsky, S. B., Reberg-Horton, C. S. & Leon, R. G. (2024).
Mapping predicted biomass in cereal rye using 3D imaging and geostatistics.
Weed Science,
72(5), 553-561.
https://doi.org/10.1017/wsc.2024.62
Bording, T. S., Asif, M. R., Barfod, A. S., Larsen, J. J., Zhang, B., Grombacher, D. J., Christiansen, A. V., Engebretsen, K. W., Pedersen, J. B., Maurya, P. K. & Auken, E. (2021).
Machine learning based fast forward modelling of ground-based time-domain electromagnetic data.
Journal of Applied Geophysics,
187, Article 104290.
https://doi.org/10.1016/j.jappgeo.2021.104290
Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Article 1786.
https://doi.org/10.3390/electronics12081786
Asif, M. R., Qi, C., Wang, T., Sadiq Fareed, M. & Ali Reza, S. (2019).
License Plate Detection for Multi-national Vehicles: An Illumination Invariant Approach in Multi-lane Environment.
Computers & Electrical Engineering,
78, 132-147.
https://doi.org/10.1016/j.compeleceng.2019.07.012
Asif, M. R., Qi, C., Wang, T., Fareed, M. S. & Khan, S. (2019).
License plate detection for multi-national vehicles – a generalized approach.
Multimedia Tools and Applications,
78(24), 35585-35606.
https://doi.org/10.1007/s11042-019-08199-4
Kusk, K., Nielsen, D. B., Thylstrup, T., Rasmussen, N. H., Jørvang, J.
, Pedersen, C. F. & Wagner, S. R. (2012).
Lessons Learned From a Lightweight Context-Aware System for Achieving Reliable Home Blood Pressure Self-Measurements. Paper presented at NordiCHI 2012, The Nordic Conference on Human-Computer Interaction, Copenhagen, Denmark.
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Beevi, F. H. A., Pedersen, C. F., Wagner, S. R. & Hallerstede, S. (2014).
Lateral Fall Detection via Events in Linear Prediction Residual of Acceleration. In C. Ramos, P. Novais, C. Ehrwein Nihan & J. M. Corchado Rodriguez (Eds.),
Ambient Intelligence - Software and Applications: 5th International Symposium on Ambient Intelligence (Vol. 291, pp. 201-208). Springer.
https://doi.org/10.1007/978-3-319-07596-9_22
Pedersen, C. F., Trier Lund, M., Vardinghus Nielsen, C., Fromberg, J., Sloth, S., Bay Velling, M., Staach, L. & Lorenzen, T. (2000).
Læring med IT: Novo Nordisk Projektet. Pictures, Video and sound recordings (digital), Novo Nordisk and The Danish Ministry of Education.