Pedersen, C. F., Jensen, J. J., Dalsgaard, P., Larsen, L. B., Saugstrup, D. & Kaldanis, V. (2004).
Report on set-up of field-trial. (1. udgave ed.). Information Society Technologies, 507102, My Personal Adaptive Global NET (MAGNET)
Jørvang, J., Kusk, K., Nielsen, D. B., Thylstrup, T.
, Pedersen, C. F. & Wagner, S. R. (2013).
Reliable Unsupervised Home Blood Pressure Self-Measurement with a Focus on Time-to-Rest using Sensor Fusion.
The Journal of Pervasive Systems Engineering,
1.
http://pervasivesystems.org/Papers/2013-1/Reliable%20Unsupervised%20Home%20Blood%20Pressure.pdf
Jensen, M. H., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S. E., Simonsen, C. Z., Grønhøj, M. H., Rom Poulsen, F.
, Rehman, N. U. & Korshoej, A. R. (2023).
Reliability and Performance of the IRRAflow® System for Intracranial Lavage and Evacuation of Hematomas - A Technical Note.
https://doi.org/10.1101/2023.07.07.23292372
Haldrup, M., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S., Ziegler Simonsen, C., Grønhøj, M., Poulsen, F. R.
, Ur Rehman, N. & Rosendal Korshoej, A. (2024).
Reliability and performance of the IRRAflow® system for intracranial lavage and evacuation of hematomas-A technical note.
PLOS ONE,
19(4 April), Article e0297131.
https://doi.org/10.1371/journal.pone.0297131
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. In H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (Eds.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Iqbal, S., Khan, T. M.
, Naveed, K., Naqvi, S. S. & Nawaz, S. J. (2022).
Recent trends and advances in fundus image analysis: A review.
Computers in Biology and Medicine,
151, Article 106277.
https://doi.org/10.1016/j.compbiomed.2022.106277
Jørgensen, R., Sørensen, C. A. G., Bak, T. & Moore, K. (2004).
Rational agents for agricultural crop surveying: Adaptive task and motion planning. In
Proc. 5th int. workshop on Artificial Intelligence in Agriculture (AIA'2004), (Rafea, M., (ed.)), Cairo, Egypt (pp. 11-16)
https://doi.org/10.1016/S1474-6670(17)38682-2
Miranda, J., Cabral, J., Ravelo, B.
, Wagner, S. R., Pedersen, C. F., Memon, M. & Mathiesen, M. (2015).
Radiated EMC immunity investigation of common recognition identification platform for medical applications.
Journal of Physics D: Applied Physics,
69(1).
https://doi.org/10.1051/epjap/2014140230
Ravelo, B., Miranda, J., Cabral, J.
, Wagner, S. R., Pedersen, C. F., Memon, M. & Mathiesen, M. (2016, Mar 24).
Radiated EMC Characterization of Common Recognition and Identification Platform for E-Healthcare.
Yan, R. J.
, Kayacan, E., Chen, I. M., Tiong, L. K. & Wu, J. (2019).
QuicaBot: Quality Inspection and Assessment Robot.
IEEE Transactions on Automation Science and Engineering,
16(2), 506-517.
https://doi.org/10.1109/TASE.2018.2829927
Madsen, S. L., Karstoft, H., Nyholm Jørgensen, R., Nørremark, M., Khokhar, Y., Gomez, J. S., pier van Gosliga, S. & Jaakkola, K. (2017).
Quantifying behaviour of dairy cows via multi-stage Support Vector Machines. In D. Berckmans & A. Keita (Eds.),
Book of proceedings: 8th European Conference on Precision Livestock Farming: ECPLF 2017 (pp. 90-100)
Gebreyesus, G., Cheruiyot Bett , R., Nakimbugwe, D.
, Hansen, L. S., Nielsen, H. M., Karstoft, H., Bjerge, K., Nkirote Kunyanga , C., MBI Tanga, C., Mwikirize, C., Akol, R., Katumba, A., Khamis, F., Kinyua, J., Walusimbi, S., Geoffrey, S., Roos, N.
& Sahana, G. (2024).
Prospects of implementing black soldier fly (BSF) selective breeding in Kenya and Uganda: Status from the FlyGene Project. Abstract from Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Rafiei Foroushani, M., Niknam, T., Aghaei, J., Shafie-khah, M. & P.S.Catalão, J. (2018).
Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine.
IEEE Transactions on Smart Grid,
9(6), 6961 - 6971. Article 8298533.
https://doi.org/10.1109/TSG.2018.2807845
Christiansen, M. P.
, Teimouri, N., Laursen, M. S., Mikkelsen, B. F.
, Jorgensen, R. N. & Sorensen, C. A. G. (2019).
Preprocessed sentinel-1 data via a web service focused on agricultural field monitoring.
IEEE Access,
7(1), 65139-65149. Article 8715769.
https://doi.org/10.1109/ACCESS.2019.2917063
Mortensen, A. K., Karstoft, H., Søegaard, K., Gislum, R. & Nyholm Jørgensen, R. (2017).
Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis.
Journal of Imaging,
3(4), Article 59.
https://doi.org/10.3390/jimaging3040059
Markopoulos, A., Dalsgaard, P., Gkanas, I., Jensen, J. J., Jiang, B., Kaldanis, V., Larsen, L. B.
, Pedersen, C. F., Christensen, D. S., Schultz, N., Sørensen, L. T. & Peréz Vila, J. (2004).
Preliminary report: Draft user centric scenarios for PNs of a valid architecture. Information Society Technologies, My Personal Adaptive Global NET (MAGNET), IST 507102.
Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C.
& Gebreyesus, G. (2025).
Prediction of black soldier fly larval sex and morphological traits using computer vision and deep learning.
Smart Agricultural Technology,
11, Article 100953.
https://doi.org/10.1016/j.atech.2025.100953
Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. In
Proceedings of the 14th International Conference on Precision Engineering Article 5079 International Society of Precision Agriculture.
https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
https://ispag.org/proceedings/?action=abstract&id=5079&search=authors