Kakavandi, F., de Reus, R.
, Gomes, C., Heidari, N., Iosifidis, A. & Larsen, P. G. (2022).
Product Quality Control in Assembly Machine under Data Restricted Settings. In
2022 IEEE 20th International Conference on Industrial Informatics, INDIN 2022 (pp. 735-741). IEEE.
https://doi.org/10.1109/INDIN51773.2022.9976173
Rafiei Foroushani, M., Niknam, T., Aghaei, J., Shafie-khah, M. & P.S.Catalão, J. (2018).
Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine.
IEEE Transactions on Smart Grid,
9(6), 6961 - 6971. Article 8298533.
https://doi.org/10.1109/TSG.2018.2807845
Laakom, F., Raitoharju, J.
, Iosifidis, A., Tuna, U., Nikkanen, J. & Gabbouj, M. (2020).
Probabilistic Color Constancy. In
2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings (pp. 978-982). Article 9190893 IEEE.
https://doi.org/10.1109/ICIP40778.2020.9190893
Christiansen, M. P.
, Teimouri, N., Laursen, M. S., Mikkelsen, B. F.
, Jorgensen, R. N. & Sorensen, C. A. G. (2019).
Preprocessed sentinel-1 data via a web service focused on agricultural field monitoring.
IEEE Access,
7(1), 65139-65149. Article 8715769.
https://doi.org/10.1109/ACCESS.2019.2917063
Mortensen, A. K., Karstoft, H., Søegaard, K., Gislum, R. & Nyholm Jørgensen, R. (2017).
Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis.
Journal of Imaging,
3(4), Article 59.
https://doi.org/10.3390/jimaging3040059
Markopoulos, A., Dalsgaard, P., Gkanas, I., Jensen, J. J., Jiang, B., Kaldanis, V., Larsen, L. B.
, Pedersen, C. F., Christensen, D. S., Schultz, N., Sørensen, L. T. & Peréz Vila, J. (2004).
Preliminary report: Draft user centric scenarios for PNs of a valid architecture. Information Society Technologies, My Personal Adaptive Global NET (MAGNET), IST 507102.
Baltakys, K., Baltakienė, M.
, Heidari, N., Iosifidis, A. & Kanniainen, J. (2023).
Predicting the trading behavior of socially connected investors: Graph neural network approach with implications to market surveillance.
Expert Systems with Applications,
228, Article 120285.
https://doi.org/10.1016/j.eswa.2023.120285
Shabani, M., Magris, M., Tzagkarakis, G., Kanniainen, J.
& Iosifidis, A. (2023).
Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots.
Neural Computing and Applications,
35(25), 18519–18531.
https://doi.org/10.1007/s00521-023-08674-y
Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. In
Proceedings of the 14th International Conference on Precision Engineering Article 5079 International Society of Precision Agriculture.
https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
https://ispag.org/proceedings/?action=abstract&id=5079&search=authors
D’Ambrosio, F., Harbo, M., Contiero, D., Bonfigli, A. R., Cicconi, D., Heuer, N., Roos, A.
, Pedersen, C. F., Fabbietti, P. & Gagliardi, C. (2024).
Preact to lower the risk of falling by customized rehabilitation across Europe: the feasibility study protocol of the PRECISE project in Italy.
Frontiers in Public Health,
12, Article 1293621.
https://doi.org/10.3389/fpubh.2024.1293621
Christiansen, P., Kragh, M. F., Steen, K. A., Karstoft, H. & Nyholm Jørgensen, R. (2017).
Platform for evaluating sensors and human detection in autonomous mowing operations.
Precision Agriculture,
18(3), 350-365.
https://doi.org/10.1007/s11119-017-9497-6
Ma, X., J. Hegarty, P., Abildgaard Pedersen, J.
, Johansen, L. G. & Larsen, J. J. (2016).
Personal Sound Zones: The significance of loudspeaker driver nonlinear distortion. Paper presented at 2016 AES International Conference on Sound Field Control, Guildford, United Kingdom.
https://secure.aes.org/forum/pubs/conferences/?elib=18305
Maslim, R., Chaoyi, H., Yixi, Z., Linhao, J., Bahadir Kocer, B.
& Kayacan, E. (2015).
Performance evaluation of adaptive and nonadaptive fuzzy structures for 4D trajectory tracking of quadrotors: A comparative study. In
Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on (pp. 1-7). IEEE.
https://doi.org/10.1109/FUZZ-IEEE.2015.7337945
Ferrarini, B., Ehsan, S., Leonardis, A.
, Rehman, N. U. & McDonald-Maier, K. D. (2018).
Performance Characterization of Image Feature Detectors in Relation to the Scene Content Utilizing a Large Image Database.
IEEE Access,
6, 8564-8573.
https://doi.org/10.1109/access.2018.2795460
Angelov, P., Bernardi, M. L., Nardini, F. M., Pecori, R., Valerio, L., Dini, P., Ashraf, S., Aversano, L., Bianchini, M., Brutti, A., Bukovsky, I., Cagnoni, S., Cao, J., Cimitile, M., Dazzi, P., Iammarino, M.
, Iosifidis, A., Michahelles, F., Mora, A. ... Welsh, M. (2024).
PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence - Welcome and Committees. In
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (pp. 34-35). IEEE.
https://doi.org/10.1109/PerComWorkshops59983.2024.10503466