Jacobsen, R. H., Matlekovic, L.
, Shi, L., Malle, N., Ayoub, N.
, Hageman, K., Hansen, S., Nyboe, F. F.
& Ebeid, E. (2023).
Design of an Autonomous Cooperative Drone Swarm for Inspections of Safety Critical Infrastructure.
Applied Sciences (Switzerland),
13(3), Artikel 1256.
https://doi.org/10.3390/app13031256
Islam, M. T., Khan, H. A.
, Naveed, K., Nauman, A., Gulfam, S. M. & Kim, S. W. (2023).
LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images.
Electronics,
12(8), Artikel 1786.
https://doi.org/10.3390/electronics12081786
Iraji, M., Dehghani, M., Mohammadi, M.
, Vafamand, N. & Boudjadar, J. (2021).
Motor Current Signature Analysis Using Shapelet. I H. Selvaraj, G. Chmaj & D. Zydek (red.),
Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020 (s. 23-33). Springer.
https://doi.org/10.1007/978-3-030-65796-3_3
Iqbal, S., Khan, T. M.
, Naveed, K., Naqvi, S. S. & Nawaz, S. J. (2022).
Recent trends and advances in fundus image analysis: A review.
Computers in Biology and Medicine,
151, Artikel 106277.
https://doi.org/10.1016/j.compbiomed.2022.106277
Iqbal, S.
, Naveed, K., Naqvi, S. S., Naveed, A. & Khan, T. M. (2023).
Robust retinal blood vessel segmentation using a patch-based statistical adaptive multi-scale line detector.
Digital Signal Processing: A Review Journal,
139, Artikel 104075.
https://doi.org/10.1016/j.dsp.2023.104075
Inci, E. O., Croes, J., Desmet, W.
, Gomes, C., Thule, C., Lausdahl, K. & Larsen, P. G. (2021).
The Effect and Selection of Solution Sequence in Co-Simulation. I C. R. Martin, M. J. Blas & A. I. Psijas (red.),
2021 Annual Modeling and Simulation Conference (ANNSIM) (s. 1-12). IEEE.
https://doi.org/10.23919/ANNSIM52504.2021.9552130
Hudson, N., Khamfroush, H., Baughman, M.
, Lucani Rötter, D. E., Chard, K. & Foster, I. (2024).
QoS-aware edge AI placement and scheduling with multiple implementations in FaaS-based edge computing.
Future Generation Computer Systems,
157, 250-263.
https://doi.org/10.1016/j.future.2024.03.035
Hudert, M. M., Elvebakken, M. F., Meagher, M.
, Mangliar, L., Zhang, X. & Esterle, L. (2022).
Deep learning enhanced robotic fabrication of timber-to-timber connections with densified hardwood nails. I
Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference: Innovation - Sustainability - Legacy (s. 1740-1748)
Huang, Q., Li, H., Liao, Y., Hao, Y.
& Zhou, P. (2024).
Noise-NeRF: Hide Information in Neural Radiance Field Using Trainable Noise. I M. Wand, K. Malinovská, J. Schmidhuber & I. V. Tetko (red.),
Artificial Neural Networks and Machine Learning – ICANN 2024 - 33rd International Conference on Artificial Neural Networks, Proceedings (s. 320-334). Springer.
https://doi.org/10.1007/978-3-031-72335-3_22
Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S., Bjerge, K., Madsen, S. A., Jeppesen, M. R. & Melvad, C. (2022).
Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ,
10, Artikel e13837.
https://doi.org/10.7717/peerj.13837
Hosseini, S., Laursen, K., Rashidi, A., Mondal, T., Corbett, B.
& Moradi, F. (2021).
S-MRUT: Sectored-Multi Ring Ultrasonic Transducer for Selective Powering of Brain Implants.
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,
68(1), 191-200. Artikel 9112273.
https://doi.org/10.1109/TUFFC.2020.3001084
Horrillo-Quintero, P., Garcia-Trivino, P., Hoseinni, E., Garcia-Vazquez, C. A., Sanchez-Sainz, H., Ugalde-Loo, C. E.
, Peric, V. & Fernandez-Ramirez, L. M. (2024).
Dynamic Fuzzy Logic Energy Management System for a Multi-Energy Microgrid.
IEEE Access,
12, 93221-93234.
https://doi.org/10.1109/ACCESS.2024.3422009
Honoré, J. T., Rask, R. D.
& Wagner, S. R. (2023).
Fall Detection Combining Android Accelerometer and Step Counting Virtual Sensors. I G. A. Papadopoulos, A. Achilleos, E. Pissaloux & R. Velázquez (red.),
ICT for Health, Accessibility and Wellbeing - 2nd International Conference, IHAW 2022, Revised Selected Papers (s. 3-16). Springer.
https://doi.org/10.1007/978-3-031-29548-5_1
Hervella, C., Diez, L., Fernández, F., Marcano, N. J. H.
, Jacobsen, R. H. & Agüero, R. (2022).
Realistic Assessment of Transport Protocols Performance over LEO-based Communications. I
PE-WASUN '22: Proceedings of the 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor & Ubiquitous Networks (s. 91-98). Association for Computing Machinery.
https://doi.org/10.1145/3551663.3558680
Helmstedt, C., Manouselis , N. M., Martín-Moncunill, D., Protonotarios, V., Sicilia, M.-A., M. Stracke, C., Adamides, G., Aventurier, P., Belsis, P., Beyer, J., Biniari, K., Bouza, D., Ciotoli, F., Engel-Vermette, S., Nicola Ghirad, N. G., Koutoumanos, A.
, Jensen, A. L., Le Henaff, D., Masselin-Silvin , S. ... Tsiflidou, E. (2020).
Opening Up Access to Scientific Information: Recommendations for Improving Virtual Repositories and Online Communities. University Publisher.
https://hal.inrae.fr/hal-02806629/document
Heidary, J., Oshnoei, S.
, Gheisarnejad Chirani, M., Khalghani, M. R.
& Khooban, M. H. (2024).
Shipboard Microgrid Frequency Control Based on Machine Learning Under Hybrid Cyberattacks.
IEEE Transactions on Industrial Electronics,
71(7), 7136-7146.
https://doi.org/10.1109/TIE.2023.3303627