Kayacan, E.
, Kayacan, E., Chen, I.-M., Ramon, H. & Saeys, W. (2018).
On The Comparison of Model-Based and Model-Free Controllers in Guidance, Navigation and Control of Agricultural Vehicles. In R. John, H. Hagras & O. Castillo (Eds.),
Studies in Fuzziness and Soft Computing (Vol. 362, pp. 49-73). Springer.
https://doi.org/10.1007/978-3-319-72892-6_3
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Korthals, T.
, Kragh, M. F., Christiansen, P., Karstoft, H., Nyholm Jørgensen, R. & Rückert, U. (2018).
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation.
Frontiers in Robotics and AI,
5(MAR), Article 28.
https://doi.org/10.3389/frobt.2018.00028
Kouskouridas, R., Belagiannis, V., Gasteratos, A., Kyriakoulis, N., Chrysostomou, D.
, Iosifidis, A., Karakasis, E., Badekas, E. & G. Mouroutsos, S. (2009).
Intelligent Integrated Vision System for Indoor Robotics Applications. In
5th National and International HSSS Conference https://www.researchgate.net/publication/265225992_Intelligent_Integrated_Vision_System_for_Indoor_Robotics_Applications
Iosifidis, A., Tefas, A., Nikolaidis, N. & Pitas, I. (2011).
Learning Human Identity Using View-Invariant Multi-view Movement Representation. In C. Vielhauer, J. Dittmann, A. Drygajlo, N. C. Juul & M. C. Fairhurst (Eds.),
Biometrics and ID Management: COST 2101 European Workshop, BioID 2011, Brandenburg (Havel), Germany, March 8-10, 2011. Proceedings (pp. 217-226). Springer.
https://doi.org/10.1007/978-3-642-19530-3_20
Tefas, A.
, Iosifidis, A. & Pitas, I. (2013).
Neural Networks for Digital Media Analysis and Description. In L. Iliadis, H. Papadopoulos & C. Jayne (Eds.),
Engineering Applications of Neural Networks: 14th International Conference, EANN 2013, Halkidiki, Greece, September 13-16, 2013 Proceedings, Part I (pp. 1-11). Springer.
https://doi.org/10.1007/978-3-642-41013-0_1
Iosifidis, A., Tefas, A. & Pitas, I. (2014).
Computational Intelligence Approaches for Digital Media Analysis and Description. In J.-S. Pan, V. Snasel, E. S. Corchado, A. Abraham & S.-L. Wang (Eds.),
Intelligent Data analysis and its Applications, Volume II (Vol. 2, pp. 263-272). Springer.
https://doi.org/10.1007/978-3-319-07773-4_26
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009