Kayacan, E., Kayacan, E., Ramon, H., Kaynak, O. & Saeys, W. (2014).
Towards Agrobots: Trajectory Control of an Autonomous Tractor Using Type-2 Fuzzy Logic Controllers.
IEEE - ASME Transactions on Mechatronics,
20(1), 287-298.
https://doi.org/10.1109/TMECH.2013.2291874
Thanh Nguyen, T., Vandevoorde, K., Wouters, N.
, Kayacan, E., G. de Baerdemaeker, J. & Saeys, W. (2016).
Detection of red and bicoloured apples on tree with an RGB-D camera.
Biosystems Engineering,
146, 33-44.
https://doi.org/10.1016/j.biosystemseng.2016.01.007
Hassan, S., Ahmadieh Khanesar, M.
, Kayacan, E., jaafar, J. & Khosravi, A. (2016).
Optimal design of adaptive type-2 neuro-fuzzy systems: A review.
Applied Soft Computing,
44, 134-143.
https://doi.org/10.1016/j.asoc.2016.03.023
Yan, R.-J., Wu, J., Yeung Lee, J., Manan Khan, A., Han, C.-S.
, Kayacan, E. & Chen, I.-M. (2016).
A Novel Method for 3D Reconstruction: Division and Merging of Overlapping B-spline surfaces.
Computer-Aided Design,
81, 14-23.
https://doi.org/10.1016/j.cad.2016.08.007
Liu, L., Yan, R.-J., Maruvanchery, V.
, Kayacan, E., Chen, I.-M. & Kong Tiong, L. (2017).
Transfer learning on convolutional activation feature as applied to a building quality assessment robot.
International Journal of Advanced Robotic Systems,
14(3), 1-12.
https://doi.org/10.1177/1729881417712620
Eren, U., Prach, A., Bahadir Kocer, B., Rakovic, S. V.
, Kayacan, E. & Acikmese, B. (2017).
Model Predictive Control in Aerospace Systems: Current State and Opportunities.
AIAA Journal of Guidance, Control and Dynamics,
40(7), 1541-1566.
https://doi.org/10.2514/1.G002507
Sarabakha, A., Imanberdiyev, N.
, Kayacan, E., Ahmadieh Khanesar, M. & Hagras, H. (2017).
Novel Levenberg-Marquardt Based Learning Algorithm for Unmanned Aerial Vehicles.
Information Sciences,
417, 361-380.
https://doi.org/10.1016/j.ins.2017.07.020
Kayacan, E., Sarabakha, A., Coupland, S., John, R. & Ahmadieh Khanesar, M. (2018).
Type-2 Fuzzy Elliptic Membership Functions for Modeling Uncertainty.
Engineering Applications of Artificial Intelligence,
70, 170-183.
https://doi.org/10.1016/j.engappai.2018.02.004
Camci, E., Raju Kripalani, D., Ma, L.
, Kayacan, E. & Ahmadieh Khanesar, M. (2018).
An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm.
Swarm and Evolutionary Computation,
41, 1-8.
https://doi.org/10.1016/j.swevo.2017.10.003
Fu, C.
, Sarabakha, A., Kayacan, E., Wagner, C., John, R. & Garibaldi, J. M. (2018).
Input Uncertainty Sensitivity Enhanced Non-Singleton Fuzzy Logic Controllers for Long-Term Navigation of Quadrotor VTOL UAVs.
IEEE - ASME Transactions on Mechatronics,
23(2), 725-734.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8304792
Chen, I.-M., Asadi, E., Nie, J., Yan, R.-J., Chuan Law, W.
, Kayacan, E., Huat Yeo, S., Huat Low, K., Seet, G. & Tiong, R. (2016).
Innovations in Infrastructure Service Robots. In V. Parenti-Castelli & W. Schiehlen (Eds.),
CISM International Centre for Mechanical Sciences, Courses and Lectures: Proceedings of the 21st CISM-IFToMM Symposium (pp. 3-16). Springer.
https://doi.org/10.1007/978-3-319-33714-2_1
Kayacan, E.
, Kayacan, E., Chen, I.-M., Ramon, H. & Saeys, W. (2018).
On The Comparison of Model-Based and Model-Free Controllers in Guidance, Navigation and Control of Agricultural Vehicles. In R. John, H. Hagras & O. Castillo (Eds.),
Studies in Fuzziness and Soft Computing (Vol. 362, pp. 49-73). Springer.
https://doi.org/10.1007/978-3-319-72892-6_3
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Korthals, T.
, Kragh, M. F., Christiansen, P., Karstoft, H., Nyholm Jørgensen, R. & Rückert, U. (2018).
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation.
Frontiers in Robotics and AI,
5(MAR), Article 28.
https://doi.org/10.3389/frobt.2018.00028
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009
Skovsen, S., Dyrmann, M., Mortensen, A. K., Steen, K. A., Green, O., Eriksen, J., Gislum, R., Nyholm Jørgensen, R. & Karstoft, H. (2017).
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks.
Sensors,
17(12), Article 2930.
https://doi.org/10.3390/s17122930
Mortensen, A. K., Karstoft, H., Søegaard, K., Gislum, R. & Nyholm Jørgensen, R. (2017).
Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis.
Journal of Imaging,
3(4), Article 59.
https://doi.org/10.3390/jimaging3040059
Christiansen, M. P., Laursen, M. S., Nyholm Jørgensen, R., Skovsen, S. & Gislum, R. (2017).
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Sensors,
17(12), Article 2703.
https://doi.org/10.3390/s17122703