Khan, N., Baig, F., Nawaz, S.
, Rehman, N. U. & Sharma, S. (2016).
Analysis of Power Quality Signals Using an Adaptive Time-Frequency Distribution.
Energies,
9(11), 933.
https://doi.org/10.3390/en9110933
Ehsan, S., Clark, A., Leonardis, A.
, Rehman, N. U., Khaliq, A., Fasli, M. & McDonald-Maier, K. (2016).
A Generic Framework for Assessing the Performance Bounds of Image Feature Detectors.
Remote Sensing,
8(11), 928.
https://doi.org/10.3390/rs8110928
Rehman, N. U., Abbas, S. Z., Asif, A., Javed, A., Naveed, K. & Mandic, D. P. (2017).
Translation invariant multi-scale signal denoising based on goodness-of-fit tests.
Signal Processing,
131, 220-234.
https://doi.org/10.1016/j.sigpro.2016.08.019
Zahra, A., Kanwal, N.
, Rehman, N. U., Ehsan, S. & McDonald-Maier, K. D. (2017).
Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition.
Computers in Biology and Medicine,
88, 132-141.
https://doi.org/10.1016/j.compbiomed.2017.07.010
Ferrarini, B., Ehsan, S., Leonardis, A.
, Rehman, N. U. & McDonald-Maier, K. D. (2018).
Performance Characterization of Image Feature Detectors in Relation to the Scene Content Utilizing a Large Image Database.
IEEE Access,
6, 8564-8573.
https://doi.org/10.1109/access.2018.2795460
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Khawaja, A., Khan, T. M., Naveed, K., Naqvi, S. S.
, Rehman, N. U. & Nawaz, S. J. (2019).
An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser.
IEEE Access,
7, 164344-164361.
https://doi.org/10.1109/access.2019.2953259
Saleem, S., Naqvi, S. S., Manzoor, T., Saeed, A.
, Rehman, N. U. & Mirza, J. (2019).
A Strategy for Classification of "Vaginal vs. Cesarean Section" Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings.
Frontiers in Physiology,
10.
https://doi.org/10.3389/fphys.2019.00246
Naveed, K., Shaukat, B., Ehsan, S., Mcdonald-Maier, K. D.
, Rehman, N. U. & Baghaie, A. (Ed.) (2019).
Multiscale image denoising using goodness-of-fit test based on EDF statistics.
P L o S One,
14(5), e0216197.
https://doi.org/10.1371/journal.pone.0216197
Sadiq, M. T., Yu, X., Yuan, Z., Aziz, M. Z.
, Rehman, N. U., Ding, W. & Xiao, G. (2022).
Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition.
IEEE Transactions on Emerging Topics in Computational Intelligence,
6(5), 1177-1189.
https://doi.org/10.1109/tetci.2022.3147030
Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. In
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (pp. 6). J and N Group, Ltd..
Grombacher, D., Griffiths, M. P., Liu, L., Vang, M. & Larsen, J. J. (2022).
Frequency Shifting Steady-State Surface NMR Signals to Avoid Problematic Narrowband-Noise Sources.
Geophysical Research Letters,
49(7), Article e2021GL097402.
https://doi.org/10.1029/2021GL097402
Khan, T. M., Khan, M. A. U.
, Rehman, N. U., Naveed, K., Afridi, I. U., Naqvi, S. S. & Raazak, I. (2022).
Width-wise vessel bifurcation for improved retinal vessel segmentation.
Biomedical Signal Processing and Control,
71(Part A), Article 103169.
https://doi.org/10.1016/j.bspc.2021.103169
Larsen, J. J., Langhof, R. B.
, Kjær, M. W., Vang, M., Liu, L., Griffiths, M. & Grombacher, D. (2022).
Efficient processing of surface NMR data with spectral analysis.
Geophysical Journal International,
229(1), 286-298.
https://doi.org/10.1093/gji/ggab472
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (pp. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Gaikwad, N., Liu, L., Griffiths, M. P., Vang, M. Ø., Grombacher, D. & Larsen, J. J. (2022).
Thermal Model of the Apsu Transmitter for Lightweight and Compact Heat Sink Design. 11-13. Abstract from The 8th International Workshop on Magnetic Resonance Sounding, Strasbourg, France.
https://mrs2021.sciencesconf.org/data/pages/proceedings_MRS2021_distrib_v2.pdf
Larsen, J. J., Griffiths, M., Vang, M., Liu, L. & Grombacher, D. (2021).
Apsu - A compact surface NMR instrument for groundwater investigations.
SEG Technical Program Expanded Abstracts,
2021-September, 3135-3139.
https://doi.org/10.1190/segam2021-3582046.1
Grombacher, D., Liu, L., Griffiths, M. P., Vang, M. & Larsen, J. J. (2021).
Steady-State Surface NMR for Mapping of Groundwater.
Geophysical Research Letters,
48(23), Article e2021GL095381.
https://doi.org/10.1029/2021GL095381
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (pp. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Kass, M. A., Auken, E., Larsen, J. J. & Christiansen, A. V. (2021).
A towed magnetic gradiometer array for rapid, detailed imaging of utility, geological, and archaeological targets.
Geoscientific Instrumentation, Methods and Data Systems,
10(2), 313-323.
https://doi.org/10.5194/gi-10-313-2021
Leporowski, B. T., Tola, D., Hansen, C.
& Iosifidis, A. (2022).
Detecting Faults during Automatic Screwdriving: A Dataset and Use Case of Anomaly Detection for Automatic Screwdriving. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (pp. 224-232). Springer.
https://doi.org/10.1007/978-3-030-90700-6_25