Bajovic, D.
, Bakhtiarnia, A., Bravos, G., Brutti, A., Burkhardt, F., Cauchi, D., Chazapis, A., Cianco, C., Dall'Asen, N., Delic, V., Dimou, C., Djokic, D., Escobar-Molero, A.
, Esterle, L., Eyben, F., Farella, E., Festi, T., Geromitsos, A., Giakoumakis, G. ... Zammit, J. (2021).
MARVEL: Multimodal Extreme Scale Data Analytics for Smart Cities Environments. I
2021 International Balkan Conference on Communications and Networking, BalkanCom 2021 (s. 143-147). IEEE.
https://doi.org/10.1109/BalkanCom53780.2021.9593258
Baghaee Ivriq, S., Laursen, K., Møller Jørgensen, A., Mondal, T.
, Zamani, M., Rezaeiyan, Y., Corbett, B.
, Iversen, B. B. & Moradi, F. (2024).
A System-Level Feasibility Study of a Lead-Free Ultrasonically Powered Light Delivery Implant for Optogenetics.
Advanced Intelligent Systems ,
6(3), Artikel 2300527.
https://doi.org/10.1002/aisy.202300527
Badicu, A., Iordache, G., Suciu, G.
, Macedo, H. D., Sassanelli, C., Terzi, S.
& Larsen, P. G. (2021).
Deploying the Smart Energy Tool for Investment Simulation inside the HUBCAP Sandbox. I A. G. Bruzzone, J. S. Janosy, L. Nicoletti & G. Zacharewicz (red.),
9th International Workshop on Simulation for Energy, Sustainable Development and Environment, SESDE 2021 (s. 18-26)
https://doi.org/10.46354/i3m.2021.sesde.003
Badenhorst, W.
, Jensen, C. M., Jakobsen, U., Esfahani, Z. & Murtomäki, L. (2023).
Control-Oriented Electrochemical Model and Parameter Estimation for an All-Copper Redox Flow Battery.
Batteries,
9(5), Artikel 272.
https://doi.org/10.3390/batteries9050272
Asplund, F.
, Macedo, H. D. & Sassanelli, C. (2021).
Problematizing the Service Portfolio of Digital Innovation Hubs. I L. M. Camarinha-Matos, X. Boucher & H. Afsarmanesh (red.),
Smart and Sustainable Collaborative Networks 4.0 - 22nd IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2021, Proceedings: 22nd IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2021, Saint-Étienne, France, November 22–24, 2021, Proceedings (s. 433-440). Springer.
https://doi.org/10.1007/978-3-030-85969-5_40
Asiminari, G., Moysiadis, V., Kateris, D., Busato, P., Wu, C., Achillas, C.
, Sørensen, C. G., Pearson, S.
& Bochtis, D. (2024).
Integrated Route-Planning System for Agricultural Robots.
AgriEngineering,
6(1), 657-677.
https://doi.org/10.3390/agriengineering6010039
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E. & Larsen, J. J. (2021).
Effect of Data Pre-Processing on the Performance of Neural Networks for 1-D Transient Electromagnetic Forward Modeling.
IEEE Access,
9, 34635-34646.
https://doi.org/10.1109/ACCESS.2021.3061761
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G.
, Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data.
IEEE Transactions on Geoscience and Remote Sensing,
60, Artikel 4503610.
https://doi.org/10.1109/TGRS.2021.3076121
Asif, M. R., Foged, N., Maurya, P. K., Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data.
Geophysics,
87(4), E177-E187.
https://doi.org/10.1190/geo2021-0335.1
Asif, M. R., Maurya, P. K., Foged, N., Larsen, J. J., Auken, E. & Christiansen, A. V. (2022).
Automated transient electromagnetic data processing for ground-based and airborne systems by a deep learning expert system.
IEEE Transactions on Geoscience and Remote Sensing,
60, Artikel 5919814.
https://doi.org/10.1109/TGRS.2022.3202304
Asif, M. R., Foged, N., Bording, T. S., Larsen, J. J. & Christiansen, A. V. (2023).
DL-RMD: a geophysically constrained electromagnetic resistivity model database for deep learning applications.
Earth System Science Data,
15(3), 1389-1401.
https://doi.org/10.5194/essd-2022-345,
https://doi.org/10.5194/essd-15-1389-2023
Asif, M. R., Kass, A., Westerhoff, R., Rawlinson, Z.
, Christiansen, A. V. & Bording, T. S. (2023).
Automated Processing of a Large-Scale Airborne Electromagnetic Survey by Deep Learning. Afhandling præsenteret på NSG2023 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh , Storbritannien.
https://doi.org/10.3997/2214-4609.202320057
Asif, M. R., Kass, A., Westerhoff, R., Rawlinson, Z.
& Christiansen, A. V. (2023).
Automated data processing of a large-scale airborne time-domain electromagnetic survey by a deep learning expert system. Afhandling præsenteret på 8th International Workshop on Airborne Electromagnetics, Queensland, Australien.
Asif, M. R., Kass, M. A., Herpe, M., Rawlinson, Z., Westerhoff, R.
, Larsen, J. J. & Christiansen, A. V. (2025).
Comparative analysis of deep learning and traditional airborne electromagnetic data processing: A case study.
Geophysics,
90(3), WA103-WA112.
https://doi.org/10.1190/geo2024-0282.1
Armacki, A., Milosevic, N., Bajovic, D., Kar, S., Jakovetic, D.
, Bakhtiarnia, A., Esterle, L., Muscat, A. & Festi, T. (2023).
Communication efficient model-aware federated learning for visual crowd counting and density estimation in smart cities. I
31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings (s. 875-879). European Signal Processing Conference, EUSIPCO.
https://doi.org/10.23919/EUSIPCO58844.2023.10289938
Antonsen, M. M., Liu, S., Xu, X., Steinbach, E.
, Chinello, F. & Zhang, Q. (2024).
Digital Twin-empowered Model-Mediated Teleoperation using Multimodality Data with Signed Distance Fields. I
2024 IEEE Haptics Symposium, HAPTICS 2024 (s. 353-359). IEEE.
https://doi.org/10.1109/HAPTICS59260.2024.10520841
Angotzi, G. N., Giantomasi, L., F. Ribeiro, J., Crepaldi, M., Vincenzi, M.
, Zito, D. & Berdondini, L. (2022).
Integrated Micro-Devices for a Lab-in-Organoid Technology Platform: Current Status and Future Perspectives.
Frontiers in Neuroscience,
16, Artikel 842265.
https://doi.org/10.3389/fnins.2022.842265
Angelov, P., Bernardi, M. L., Nardini, F. M., Pecori, R., Valerio, L., Dini, P., Ashraf, S., Aversano, L., Bianchini, M., Brutti, A., Bukovsky, I., Cagnoni, S., Cao, J., Cimitile, M., Dazzi, P., Iammarino, M.
, Iosifidis, A., Michahelles, F., Mora, A. ... Welsh, M. (2024).
PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence - Welcome and Committees. I
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (s. 34-35). IEEE.
https://doi.org/10.1109/PerComWorkshops59983.2024.10503466
Andresen, B., Jassmann, U., Dreyer, T., Santjer , F., Quistorf, G. & Zuga, A. (2024).
IEC 61400-21-4: Measurement and assessment of electrical characteristics: A standardized way to perform grid compliance test & measurements at component and subsystem level for wind turbines. I
IEC 61400-21-4: Measurement and assessment of electrical characteristics : A standardized way to perform grid compliance test & measurements at component and subsystem level for wind turbines
Andersen, M. N., Adamsen, A. P. S., Hansen, E. M., Thomsen, I. K., Hutchings, N., Elsgaard, L., Jørgensen, U., Munkholm, L. J., Børgesen, C. D., Sørensen, P., Petersen, S. O., Lærke, P. E., Olesen, J. E., Børsting, C. F., Lund, P., Kjeldsen, M. H., Maigaard, M., Villumsen, T. M., Dalby, F. R. ... Kristensen, H. L. (2023).
Virkemidler til reduktion af klimagasser i landbruget. DCA - Nationalt Center for Fødevarer og Jordbrug.
https://dcapub.au.dk/djfpublikation/djfpdf/DCArapport220.pdf
Andersen, M. N. (red.), Adamsen, A. P. S. (red.), Lærke, P. E., Ugilt Larsen, S., Jørgensen, U., Olesen, J. E., Manevski, K., Bay, S. S., Hutchings, N., Hansen, E. M., Munkholm, L. J., Børgesen, C. D., Thomsen, I. K., Elsgaard, L., Petersen, S. O., Toda, M., Ntinyari, W., Sørensen, P., Audet, J. ... Nielsen, H. M. (2024).
Virkemidler til reduktion af klimagasser i landbruget - 2024. DCA - Nationalt Center for Fødevarer og Jordbrug. DCA rapport Bind 2024 Nr. 227
https://dcapub.au.dk/djfpublikation/djfpdf/DCArapport227.pdf
Andersen, S., Laursen, P. H.
, Wood, G. J., Lyhne, M. D., Madsen, T. L., Hansen, E. S. S., Johansen, P., Kim, W. Y. & Andersen, M. J. (2024).
Comparison of admittance and cardiac magnetic resonance generated pressure-volume loops in a porcine model.
Physiological Measurement,
45(5), Artikel 055014.
https://doi.org/10.1088/1361-6579/ad4a03
Andalibi, M.
, Hajihosseini, M., Gheisarnejad, M.
, Boudjadar, J., Khooban, M. H. & Dragicevic, T. (2020).
A New Nonlinear Controller for Multilevel DC/DC Boost Converter. I
2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2020 (s. 276-280). Artikel 9244399 IEEE.
https://doi.org/10.1109/PEDG48541.2020.9244399
Andalibi, M.
, Hajihosseini, M., Teymoori, S., Kargar, M. & Gheisarnejad, M. (2021).
A Time-Varying Deep Reinforcement Model Predictive Control for DC Power Converter Systems. I S. K. Mazumder, J. C. Balda, L. He, J. Liu & A. Gupta (red.),
2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (s. 1-6). IEEE.
https://doi.org/10.1109/PEDG51384.2021.9494214
Andalibi, M., Shourangizhaghighi, A., Hajihosseini, M., Saaed Madani, S., Ziebert, C.
& Boudjadar, J. (2023).
Design and Simulation-Based Optimization of an Intelligent Autonomous Cruise Control System.
Computers,
12(4), Artikel 84.
https://doi.org/10.3390/computers12040084
Anandakumar, M., Pradeepkumar, J.
, Kappel, S. L., Edussooriya, C. U. S. & De Silva, A. C. (2023).
A Knowledge Distillation Framework for Enhancing Ear-EEG Based Sleep Staging with Scalp-EEG Data. I
2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (s. 514-519). IEEE.
https://doi.org/10.1109/SMC53992.2023.10394011
Anand, M., Panigrahi, S.
, Kofoed, M. V. W., Aghababaei, R. & Agarwala, S. (2024).
Bioinspired poly(vinyl alcohol) films with tunable adhesion and self-healing for biodegradable electronics and beyond.
Sustainable Materials and Technologies,
41, Artikel e01084.
https://doi.org/10.1016/j.susmat.2024.e01084
Anagnostis, A., Tagarakis, A. C., Kateris, D., Moysiadis, V.
, Sørensen, C. G., Pearson, S.
& Bochtis, D. (2021).
Orchard mapping with deep learning semantic segmentation.
Sensors,
21(11), Artikel 3813.
https://doi.org/10.3390/s21113813