Camci, E., Raju Kripalani, D., Ma, L.
, Kayacan, E. & Ahmadieh Khanesar, M. (2018).
An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm.
Swarm and Evolutionary Computation,
41, 1-8.
https://doi.org/10.1016/j.swevo.2017.10.003
Fu, C.
, Sarabakha, A., Kayacan, E., Wagner, C., John, R. & Garibaldi, J. M. (2018).
Input Uncertainty Sensitivity Enhanced Non-Singleton Fuzzy Logic Controllers for Long-Term Navigation of Quadrotor VTOL UAVs.
IEEE - ASME Transactions on Mechatronics,
23(2), 725-734.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8304792
Chen, I.-M., Asadi, E., Nie, J., Yan, R.-J., Chuan Law, W.
, Kayacan, E., Huat Yeo, S., Huat Low, K., Seet, G. & Tiong, R. (2016).
Innovations in Infrastructure Service Robots. In V. Parenti-Castelli & W. Schiehlen (Eds.),
CISM International Centre for Mechanical Sciences, Courses and Lectures: Proceedings of the 21st CISM-IFToMM Symposium (pp. 3-16). Springer.
https://doi.org/10.1007/978-3-319-33714-2_1
Kayacan, E.
, Kayacan, E., Chen, I.-M., Ramon, H. & Saeys, W. (2018).
On The Comparison of Model-Based and Model-Free Controllers in Guidance, Navigation and Control of Agricultural Vehicles. In R. John, H. Hagras & O. Castillo (Eds.),
Studies in Fuzziness and Soft Computing (Vol. 362, pp. 49-73). Springer.
https://doi.org/10.1007/978-3-319-72892-6_3
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. In S. V. Rakovic & W. Levine (Eds.),
Handbook of Model Predictive Control (1 ed., pp. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract from International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Korthals, T.
, Kragh, M. F., Christiansen, P., Karstoft, H., Nyholm Jørgensen, R. & Rückert, U. (2018).
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation.
Frontiers in Robotics and AI,
5(MAR), Article 28.
https://doi.org/10.3389/frobt.2018.00028
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009
Skovsen, S., Dyrmann, M., Mortensen, A. K., Steen, K. A., Green, O., Eriksen, J., Gislum, R., Nyholm Jørgensen, R. & Karstoft, H. (2017).
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks.
Sensors,
17(12), Article 2930.
https://doi.org/10.3390/s17122930
Mortensen, A. K., Karstoft, H., Søegaard, K., Gislum, R. & Nyholm Jørgensen, R. (2017).
Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis.
Journal of Imaging,
3(4), Article 59.
https://doi.org/10.3390/jimaging3040059
Christiansen, M. P., Laursen, M. S., Nyholm Jørgensen, R., Skovsen, S. & Gislum, R. (2017).
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Sensors,
17(12), Article 2703.
https://doi.org/10.3390/s17122703
Lausdahl, K. G., Bjerge, K., Bokhove, T., Groen, F.
& Larsen, P. G. (2017).
Transitioning from Crescendo to INTO-CPS. In J. S. Fitzgerald, P. W. V. Tran-Jørgensen & T. Oda (Eds.),
The 15th Overture Workshop: New Capabilities and Applications for Model-based Systems Engineering: Proceedings (pp. 16-30). Newcastle University.
Miranda, J., Cabral, J., Banerjee, S., Grossmann, D.
, Pedersen, C. F. & Wagner, S. R. (2017).
Analysis of OPC Unified Architecture for Healthcare Applications. In
2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2017: EFTA 2017 (pp. 1-4). IEEE.
https://doi.org/10.1109/ETFA.2017.8247771
Kragh, M. F., Christiansen, P., Laursen, M. S., Larsen, M., Steen, K. A.
, Green, O., Karstoft, H. & Jørgensen, R. N. (2017).
FieldSAFE: Dataset for Obstacle Detection in Agriculture.
Sensors,
17(11), Article 2579.
https://doi.org/10.3390/s17112579
Madsen, S. L., Karstoft, H., Nyholm Jørgensen, R., Nørremark, M., Khokhar, Y., Gomez, J. S., pier van Gosliga, S. & Jaakkola, K. (2017).
Quantifying behaviour of dairy cows via multi-stage Support Vector Machines. In D. Berckmans & A. Keita (Eds.),
Book of proceedings: 8th European Conference on Precision Livestock Farming: ECPLF 2017 (pp. 90-100)
Nielsen, P. R., Jensen, N.-P.
, Dyrmann, M., Nielsen, P.-H.
& Nyholm Jørgensen, R. (2017).
RoboWeedSupport - Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems.
Advances in Animal Biosciences,
8(2), 860-864.
https://doi.org/10.1017/S2040470017001054
Nyholm Jørgensen, R., Sørensen, R. A., Laursen, M. S., Rasmussen, J. & Nielsen, J. (2017).
FutureCropping Generering af tidselkort med Pix4D, DeepLearning og QGIS 18AUG2017. Pictures, Video and sound recordings (digital), YouTube.
https://www.youtube.com/watch?v=3X8h4U4o2-o
Sridharan, K. S., Højlund, A., Johnsen, E. L., Sunde, N., Johansen, L. G., Beniczky, S. & Østergaard, K. (2017).
Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease.
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
128(7), 1327-1336.
https://doi.org/10.1016/j.clinph.2017.04.014
Jeppesen, J. H., Jacobsen, R. H., Nyholm Jørgensen, R., Halberg, A.
& Toftegaard, T. S. (2017).
Identification of High-Variation Fields based on Open Satellite Imagery.
Advances in Animal Biosciences,
8(2), 388-393.
https://doi.org/10.1017/S2040470017000693