Hansen, B.
, Christiansen, A. V., Dalgaard, T., Jørgensen, F.
, Iversen, B. V., Larsen, J. J., Kjærgaard, C., Jacobsen, B. H.
, Auken, E., Hojberg, A. L.
& Schaper, S. (2020).
Danish review on advances in assessing: N retention in the subsurface in relation to future targeted N-regulation of agriculture. GEUS, Geological Survey of Denmark and Greenland. GEUS Rapport Bind 2020 Nr. 11
https://mapfield.dk/media/21858/d26_synthesis_report_mapfield.pdf
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Deep Adaptive Input Normalization for Time Series Forecasting.
IEEE Transactions on Neural Networks and Learning Systems,
31(9), 3760-3765.
https://doi.org/10.1109/TNNLS.2019.2944933
Banaei, M., Ghanami, F.
, Rafiei Foroushani, M., Boudjadar, J. & Khooban, M. H. (2020).
Energy Management of Hybrid Diesel/Battery Ships in Multidisciplinary Emission Policy Areas.
Energies,
13(16), Artikel 4179.
https://doi.org/10.3390/en13164179
Ärje, J., Raitoharju, J.
, Iosifidis, A., Tirronen, V., Meissner, K., Gabbouj, M., Kiranyaz, S. & Kärkkäinen, S. (2020).
Human experts vs. machines in taxa recognition.
Signal Processing: Image Communication,
87, Artikel 115917.
https://doi.org/10.1016/j.image.2020.115917
Asif, M. R., Bording, T. S., Barfod, A. A. S., Zhang, B., Larsen, J. J. & Auken, E. (2020).
Improving computational efficiency of forward modelling for ground-based time-domain electromagnetic data using neural networks. Abstract fra EGU:General assembly 2020 , Vienna , Østrig.
https://doi.org/10.5194/egusphere-egu2020-7067
Farkhani, S., Skovsen, S. K., Mortensen, A. K., Laursen, M. S., Nyholm Jørgensen, R. & Karstoft, H. (2020).
Initial evaluation of enriching satellite imagery using sparse proximal sensing in precision farming. I C. M. U. Neale & A. Maltese (red.),
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII (Bind 11528). Artikel 115280A SPIE - International Society for Optical Engineering.
https://doi.org/10.1117/12.2573626
Grombacher, D., Liu, L., Kass, M. A., Osterman, G., Fiandaca, G., Auken, E. & Larsen, J. J. (2020).
Inverting surface NMR free induction decay data in a voltage-time data space.
Journal of Applied Geophysics,
172, Artikel 103869.
https://doi.org/10.1016/j.jappgeo.2019.103869
Lang, X.
, Rehman, N. U., Zhang, Y., Xie, L. & Su, H. (2020).
Median ensemble empirical mode decomposition.
Signal Processing,
176, Artikel 107686.
https://doi.org/10.1016/j.sigpro.2020.107686
Laakom, F., Raitoharju, J.
, Iosifidis, A., Tuna, U., Nikkanen, J. & Gabbouj, M. (2020).
Probabilistic Color Constancy. I
2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings (s. 978-982). Artikel 9190893 IEEE.
https://doi.org/10.1109/ICIP40778.2020.9190893
Krestenitis, M., Passalis, N.
, Iosifidis, A., Gabbouj, M. & Tefas, A. (2020).
Recurrent bag-of-features for visual information analysis.
Pattern Recognition,
106, Artikel 107380.
https://doi.org/10.1016/j.patcog.2020.107380
Hansen, O. L. P., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2020).
Species-level image classification with convolutional neural network enables insect identification from habitus images.
Ecology and Evolution,
10(2), 737-747.
https://doi.org/10.1002/ece3.5921
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal Bag-of-Features Learning for Predicting Mid Price Movements using High Frequency Limit Order Book Data.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(6), 774-785.
https://doi.org/10.1109/TETCI.2018.2872598
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data.
Pattern Recognition Letters,
136, 183-189.
https://doi.org/10.1016/j.patrec.2020.06.006
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Using Deep Learning for price prediction by exploiting stationary limit order book features.
Applied Soft Computing Journal,
93, Artikel 106401.
https://doi.org/10.1016/j.asoc.2020.106401
Bjerge, K., Frigaard, C. E., Mikkelsen, P. H., Nielsen, T. H., Misbih, M. & Kryger, P. (2019).
A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony.
Computers and Electronics in Agriculture,
164(September), Artikel 104898.
https://doi.org/10.1016/j.compag.2019.104898