Bjerge, K., Frigaard, C. E., Mikkelsen, P. H., Nielsen, T. H., Misbih, M. & Kryger, P. (2019).
A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony.
Computers and Electronics in Agriculture,
164(September), Artikel 104898.
https://doi.org/10.1016/j.compag.2019.104898
Ärje, J., Milioris, D., Tran, D. T., Jepsen, J. U., Raitoharju, J., Gabbouj, M.
, Iosifidis, A. & Høye, T. T. (2019).
Automatic Flower Detection and Classification System Uing a Light-Weight Convolutional Neural Network. I
27th European Signal Processing Conference EUSIPCO 2019 IEEE.
http://eusipco2019.org/Proceedings/papertitles.html
Gislum, R., Nyholm Jørgensen, R., Thomsen, I. K., Hansen, E. M. & Olesen, J. E., (2019).
Beskrivelse af setup for vidensindsamling og måling af NDVI-værdi i pilotprojekt om biomasse, Nr. 2019-760-001283, 3 s., jul. 03, 2019.
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. I
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (s. 7545-7549). Artikel 8682297 IEEE.
https://doi.org/10.1109/ICASSP.2019.8682297
Ntakaris, A.
, Mirone, G., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Feature Engineering for Mid-Price Prediction with Deep Learning.
IEEE Access,
7, 82390 - 82412. Artikel 8743410.
https://doi.org/10.1109/ACCESS.2019.2924353
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Mehndiratta, M., Kayacan, E., Patel, S.
, Kayacan, E. & Chowdhary, G. (2019).
Learning-based Fast Nonlinear Model Predictive Control for Custom-made 3D Printed Ground and Aerial Robots. I S. V. Rakovic & W. Levine (red.),
Handbook of Model Predictive Control (1 udg., s. 581-605). Birkhäuser Verlag.
https://doi.org/10.1007/978-3-319-77489-3_24
Asif, M. R., Qi, C., Wang, T., Fareed, M. S. & Khan, S. (2019).
License plate detection for multi-national vehicles – a generalized approach.
Multimedia Tools and Applications,
78(24), 35585-35606.
https://doi.org/10.1007/s11042-019-08199-4
Asif, M. R., Qi, C., Wang, T., Sadiq Fareed, M. & Ali Reza, S. (2019).
License Plate Detection for Multi-national Vehicles: An Illumination Invariant Approach in Multi-lane Environment.
Computers & Electrical Engineering,
78, 132-147.
https://doi.org/10.1016/j.compeleceng.2019.07.012
Nousi, P., Tsantekidis, A., Passalis, N., Ntakaris, A., Kanniainen, J., Tefas, A., Gabbouj, M.
& Iosifidis, A. (2019).
Machine Learning for Forecasting Mid Price Movement using Limit Order Book Data.
IEEE Access,
7, 64722 - 64736 . Artikel 8713851.
https://doi.org/10.1109/ACCESS.2019.2916793
Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P.
, Dyrmann, M., Andersen, P., Jensen, N.-P. & Green, O. (2019).
Marrying futuristic weed mapping with current herbicide sprayer capacities. I J. V. Stafford (red.),
Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 231-237). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_28
Eriksen, J., Frandsen, T. S., Knudsen, L.
, Skovsen, S., Nyholm Jørgensen, R., Steen, K. A.
, Green, O. & Rasmussen, J. (2019).
Nitrogen fertilization of grass-clover leys. I O. Huguenin-Elie, B. Studer, R. Kölliker, D. Reheul, M. Probo, P. Barre, U. Feuerstein, I. Roldan-Ruiz, P. Mariotte & A. Hopkins (red.),
Improving sown grasslands through breeding and management: Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section "Fodder Crops and Amenity Grasses", Zürich, Switzerland, 24-27 June 2019 (s. 103-109). Wageningen Academic Publishers.
Christiansen, M. P.
, Teimouri, N., Laursen, M. S., Mikkelsen, B. F.
, Jorgensen, R. N. & Sorensen, C. A. G. (2019).
Preprocessed sentinel-1 data via a web service focused on agricultural field monitoring.
IEEE Access,
7(1), 65139-65149. Artikel 8715769.
https://doi.org/10.1109/ACCESS.2019.2917063