Korthals, T.
, Kragh, M. F., Christiansen, P., Karstoft, H., Nyholm Jørgensen, R. & Rückert, U. (2018).
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation.
Frontiers in Robotics and AI,
5(MAR), Artikel 28.
https://doi.org/10.3389/frobt.2018.00028
Teimouri, N., Omid, M., Mollazade, K., Mousazadeh, H., Alimardani, R.
& Karstoft, H. (2018).
On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach.
Biosystems Engineering,
167, 8-20.
https://doi.org/10.1016/j.biosystemseng.2017.12.009
Kayacan, E.
, Kayacan, E., Chen, I.-M., Ramon, H. & Saeys, W. (2018).
On The Comparison of Model-Based and Model-Free Controllers in Guidance, Navigation and Control of Agricultural Vehicles. I R. John, H. Hagras & O. Castillo (red.),
Studies in Fuzziness and Soft Computing (Bind 362, s. 49-73). Springer.
https://doi.org/10.1007/978-3-319-72892-6_3
Ferrarini, B., Ehsan, S., Leonardis, A.
, Rehman, N. U. & McDonald-Maier, K. D. (2018).
Performance Characterization of Image Feature Detectors in Relation to the Scene Content Utilizing a Large Image Database.
IEEE Access,
6, 8564-8573.
https://doi.org/10.1109/access.2018.2795460
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. I
Proceedings of the 14th International Conference on Precision Engineering Artikel 5079 International Society of Precision Agriculture.
https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.
https://ispag.org/proceedings/?action=abstract&id=5079&search=authors
Rafiei Foroushani, M., Niknam, T., Aghaei, J., Shafie-khah, M. & P.S.Catalão, J. (2018).
Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine.
IEEE Transactions on Smart Grid,
9(6), 6961 - 6971. Artikel 8298533.
https://doi.org/10.1109/TSG.2018.2807845
Mortensen, A. K., Bender, A., Whelan, B., Barbour, M. M., Sukkarieh, S.
, Karstoft, H. & Gislum, R. (2018).
Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation.
Computers and Electronics in Agriculture,
154, 373-381.
https://doi.org/10.1016/j.compag.2018.09.010
Larsen, D., Steen, K. A.
, Skovsen, S., Grooters, K., Eriksen, J.
, Nyholm Jørgensen, R., Dyrmann, M. & Green, O. (2018).
Semantic Segmentation of Clover-Grass Images using Images from Commercially Available Drones. I P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum & N. J. Ros (red.),
Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 110). Wageningen University.
https://doi.org/10.18174/471678
Rydahl, P., Bojer, O. M.
, Jorgensen, R. N., Dyrmann, M., Andersen, P., Jensen, N. & Sorensen, M. (2018).
Spatial variability of optimized herbicide mixtures and dosages. I
Proceedings 14th International Conference on Precision Agriculture (ICPA2018) (s. 1-14). Artikel 5040 International Society of Precision Agriculture.
https://www.ispag.org/proceedings/?action=abstractid=5040
Kayacan, E., Sarabakha, A., Coupland, S., John, R. & Ahmadieh Khanesar, M. (2018).
Type-2 Fuzzy Elliptic Membership Functions for Modeling Uncertainty.
Engineering Applications of Artificial Intelligence,
70, 170-183.
https://doi.org/10.1016/j.engappai.2018.02.004
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Teimouri, N., Dyrmann, M., Nielsen, P. R.
, Mathiassen, S. K., Somerville, G. J. & Jørgensen, R. N. (2018).
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks.
Sensors,
18(5), Artikel 1580.
https://doi.org/10.3390/s18051580
Miranda, J., Cabral, J., Banerjee, S., Grossmann, D.
, Pedersen, C. F. & Wagner, S. R. (2017).
Analysis of OPC Unified Architecture for Healthcare Applications. I
2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2017: EFTA 2017 (s. 1-4). IEEE.
https://doi.org/10.1109/ETFA.2017.8247771
Christiansen, M. P., Laursen, M. S., Nyholm Jørgensen, R., Skovsen, S. & Gislum, R. (2017).
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Sensors,
17(12), Artikel 2703.
https://doi.org/10.3390/s17122703
Yan, R.-J., Leong Low, C., Duan, J., Liu, L.
, Kayacan, E., Chen, I.-M. & Tiong, R. (2017).
Development of a Novel Post-Construction Quality Assessment Robot System. I
2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016 (s. 1-6). Artikel 7838741 IEEE .
https://doi.org/10.1109/ICARCV.2016.7838741
Laursen, M. S., Nyholm Jørgensen, R., Skov Midtiby, H.
, Mortensen, A. K. & Santhome, S. (2017).
Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings.
International Journal of Agricultural and Biosystems Engineering,
11(4), 1285.
https://www.waset.org/abstracts/62424
Sridharan, K. S., Højlund, A., Johnsen, E. L., Sunde, N., Johansen, L. G., Beniczky, S. & Østergaard, K. (2017).
Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease.
Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
128(7), 1327-1336.
https://doi.org/10.1016/j.clinph.2017.04.014