Gaikwad, N., Liu, L., Griffiths, M. P., Vang, M. Ø., Grombacher, D. & Larsen, J. J. (2022).
Thermal Model of the Apsu Transmitter for Lightweight and Compact Heat Sink Design. 11-13. Abstract fra The 8th International Workshop on Magnetic Resonance Sounding, Strasbourg, Frankrig.
https://mrs2021.sciencesconf.org/data/pages/proceedings_MRS2021_distrib_v2.pdf
Jørgensen, R., Sørensen, C. A. G., Jacobsen, H., Kirk, K., Andersen, H. J. & Nantt, D. (2005).
The potential of using robotics for data acquisition from multiple sensors within agricultural research. I
Intelligent Systems in Design and Manufacturing VI. Proc. of SPIE Vol. 5999, 82-93. http://www.spiedl.org/
Christensen, S., Wu, O., Butcher, K.
, Hjort, N., Karstoft, H., Davis, S.
& Østergaard, L. (2006).
The Physiological Significance of the Tmax Parameter in Bolus Tracking MRI. Abstract fra ISMRM 14th Annual Meeting, Seattle, USA.
Iosifidis, A., Marami, E., Tefas, A., Pitas, I. & Lyroudia, K. (2015).
The MOBISERV-AIIA Eating and Drinking multi-view database for vision-based assisted living.
Journal of Information Hiding and Multimedia Signal Processing,
6(2), 254-273.
http://bit.kuas.edu.tw/~jihmsp/2015/vol6/JIH-MSP-2015-02-008.pdf
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Datasæt
https://vision.eng.au.dk/grass-clover-dataset/
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Poster session præsenteret på IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, California, USA.
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. I
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops IEEE.
http://openaccess.thecvf.com/content_CVPRW_2019/html/CVPPP/Skovsen_The_GrassClover_Image_Dataset_for_Semantic_and_Hierarchical_Species_Understanding_CVPRW_2019_paper.html
Jørgensen, R. & Jørgensen, B. J. (1996).
The effect of N2O emission on the net CO2-displacement by energy crop production. I
Chartier, P., Ferrero, G. L., Henius, U.M., Hultbeg, S., Sachau, J. & Wiinblad, M. (eds.), Biomass for energy and the environment. Proc. 9th Europ. bioenergy conf., Copenhagen, Denmark. Vol. 3 (s. 1701-1706)
Ärje, J., Kärkkäinen, S., Meissner, K.
, Iosifidis, A., Ince, T., Gabbouj, M. & Kiranyaz, S. (2017).
The effect of automated taxa identification errors on biological indices.
Expert Systems with Applications,
72, 108-120.
https://doi.org/10.1016/j.eswa.2016.12.015
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data.
Pattern Recognition Letters,
136, 183-189.
https://doi.org/10.1016/j.patrec.2020.06.006
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal Bag-of-Features Learning for Predicting Mid Price Movements using High Frequency Limit Order Book Data.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(6), 774-785.
https://doi.org/10.1109/TETCI.2018.2872598
Vang, M., Grombacher, D., Griffiths, M. P., Liu, L. & Larsen, J. J. (2023).
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance - three Danish case studies.
Hydrology and Earth System Sciences,
27(16), 3115-3124.
https://doi.org/10.5194/hess-27-3115-2023
Frasheri, M., Katsaros, P.
, Iosifidis, A., Hansen, S. T., Gomes, C., Evans, V. T. & Larsen, P. G. (2024).
System Monitoring through a Digital Twin. I J. Fitzgerald, C. Gomes & P. G. Larsen (red.),
The Engineering of Digital Twins (s. 189-207). Springer.
https://doi.org/10.1007/978-3-031-66719-0_9
Sridharan, K. S., Johnsen, E. L., Beniczky, S., Johansen, L. G., Sunde, N. & Østergaard, K. (2015).
Studying somatosensory function in Parkinson’s disease using Magnetoencephalography. Poster session præsenteret på PhD day 2015, Aarhus University, Danmark.
Zullo, H., Cline, K., Parker, M., Buckmire, R., George, J., Gurski, K.
, Larsen, J. J., Mellor, B. & Oberweiser, J. (2011).
Student Surveys: What Do They Think? I K. Cline & H. Zullo (red.),
Teaching Mathematics with Classroom Voting, With and Without Clicker (s. 29-34). Mathematical Association of America.
http://www.maa.org/publications/ebooks/teaching-mathematics-with-classroom-voting-with-and-without-clickers
Christensen, S., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Shahrak Nadimi, E.
& Jørgensen, R. N. (2009).
Site Specific Weed Control Technologies.
Weed Research,
49(3), 225-232.
https://doi.org/10.1111/j.1365-3180.2009.00694.x