Pedersen, C. F., Jensen, J. J., Dalsgaard, P., Larsen, L. B., Saugstrup, D. & Kaldanis, V. (2004).
Report on set-up of field-trial. (1. udgave udg.). Information Society Technologies, 507102, My Personal Adaptive Global NET (MAGNET)
Jørvang, J., Kusk, K., Nielsen, D. B., Thylstrup, T.
, Pedersen, C. F. & Wagner, S. R. (2013).
Reliable Unsupervised Home Blood Pressure Self-Measurement with a Focus on Time-to-Rest using Sensor Fusion.
The Journal of Pervasive Systems Engineering,
1.
http://pervasivesystems.org/Papers/2013-1/Reliable%20Unsupervised%20Home%20Blood%20Pressure.pdf
Jensen, M. H., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S. E., Simonsen, C. Z., Grønhøj, M. H., Rom Poulsen, F.
, Rehman, N. U. & Korshoej, A. R. (2023).
Reliability and Performance of the IRRAflow® System for Intracranial Lavage and Evacuation of Hematomas - A Technical Note.
https://doi.org/10.1101/2023.07.07.23292372
Haldrup, M., Nazari, M., Gu, C.
, Rasmussen, M., Dyrskog, S., Ziegler Simonsen, C., Grønhøj, M., Poulsen, F. R.
, Ur Rehman, N. & Rosendal Korshoej, A. (2024).
Reliability and performance of the IRRAflow® system for intracranial lavage and evacuation of hematomas-A technical note.
PLOS ONE,
19(4 April), Artikel e0297131.
https://doi.org/10.1371/journal.pone.0297131
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. I H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (red.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Iqbal, S., Khan, T. M.
, Naveed, K., Naqvi, S. S. & Nawaz, S. J. (2022).
Recent trends and advances in fundus image analysis: A review.
Computers in Biology and Medicine,
151, Artikel 106277.
https://doi.org/10.1016/j.compbiomed.2022.106277
Jørgensen, R., Sørensen, C. A. G., Bak, T. & Moore, K. (2004).
Rational agents for agricultural crop surveying: Adaptive task and motion planning. I
Proc. 5th int. workshop on Artificial Intelligence in Agriculture (AIA'2004), (Rafea, M., (ed.)), Cairo, Egypt (s. 11-16)
https://doi.org/10.1016/S1474-6670(17)38682-2
Miranda, J., Cabral, J., Ravelo, B.
, Wagner, S. R., Pedersen, C. F., Memon, M. & Mathiesen, M. (2015).
Radiated EMC immunity investigation of common recognition identification platform for medical applications.
Journal of Physics D: Applied Physics,
69(1).
https://doi.org/10.1051/epjap/2014140230
Ravelo, B., Miranda, J., Cabral, J.
, Wagner, S. R., Pedersen, C. F., Memon, M. & Mathiesen, M. (2016, mar. 24).
Radiated EMC Characterization of Common Recognition and Identification Platform for E-Healthcare.
Yan, R. J.
, Kayacan, E., Chen, I. M., Tiong, L. K. & Wu, J. (2019).
QuicaBot: Quality Inspection and Assessment Robot.
IEEE Transactions on Automation Science and Engineering,
16(2), 506-517.
https://doi.org/10.1109/TASE.2018.2829927
Madsen, S. L., Karstoft, H., Nyholm Jørgensen, R., Nørremark, M., Khokhar, Y., Gomez, J. S., pier van Gosliga, S. & Jaakkola, K. (2017).
Quantifying behaviour of dairy cows via multi-stage Support Vector Machines. I D. Berckmans & A. Keita (red.),
Book of proceedings: 8th European Conference on Precision Livestock Farming: ECPLF 2017 (s. 90-100)
Gebreyesus, G., Cheruiyot Bett , R., Nakimbugwe, D.
, Hansen, L. S., Nielsen, H. M., Karstoft, H., Bjerge, K., Nkirote Kunyanga , C., MBI Tanga, C., Mwikirize, C., Akol, R., Katumba, A., Khamis, F., Kinyua, J., Walusimbi, S., Geoffrey, S., Roos, N.
& Sahana, G. (2024).
Prospects of implementing black soldier fly (BSF) selective breeding in Kenya and Uganda: Status from the FlyGene Project. Abstract fra Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Rafiei Foroushani, M., Niknam, T., Aghaei, J., Shafie-khah, M. & P.S.Catalão, J. (2018).
Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine.
IEEE Transactions on Smart Grid,
9(6), 6961 - 6971. Artikel 8298533.
https://doi.org/10.1109/TSG.2018.2807845
Christiansen, M. P.
, Teimouri, N., Laursen, M. S., Mikkelsen, B. F.
, Jorgensen, R. N. & Sorensen, C. A. G. (2019).
Preprocessed sentinel-1 data via a web service focused on agricultural field monitoring.
IEEE Access,
7(1), 65139-65149. Artikel 8715769.
https://doi.org/10.1109/ACCESS.2019.2917063
Mortensen, A. K., Karstoft, H., Søegaard, K., Gislum, R. & Nyholm Jørgensen, R. (2017).
Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis.
Journal of Imaging,
3(4), Artikel 59.
https://doi.org/10.3390/jimaging3040059
Markopoulos, A., Dalsgaard, P., Gkanas, I., Jensen, J. J., Jiang, B., Kaldanis, V., Larsen, L. B.
, Pedersen, C. F., Christensen, D. S., Schultz, N., Sørensen, L. T. & Peréz Vila, J. (2004).
Preliminary report: Draft user centric scenarios for PNs of a valid architecture. Information Society Technologies, My Personal Adaptive Global NET (MAGNET), IST 507102.
Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C.
& Gebreyesus, G. (2025).
Prediction of black soldier fly larval sex and morphological traits using computer vision and deep learning.
Smart Agricultural Technology,
11, Artikel 100953.
https://doi.org/10.1016/j.atech.2025.100953
Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. I
Proceedings of the 14th International Conference on Precision Engineering Artikel 5079 International Society of Precision Agriculture.
https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H. & Nyholm Jørgensen, R. (2018).
Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.
https://ispag.org/proceedings/?action=abstract&id=5079&search=authors