Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Deep Adaptive Input Normalization for Time Series Forecasting.
IEEE Transactions on Neural Networks and Learning Systems,
31(9), 3760-3765.
https://doi.org/10.1109/TNNLS.2019.2944933
Ärje, J., Raitoharju, J.
, Iosifidis, A., Tirronen, V., Meissner, K., Gabbouj, M., Kiranyaz, S. & Kärkkäinen, S. (2020).
Human experts vs. machines in taxa recognition.
Signal Processing: Image Communication,
87, Artikel 115917.
https://doi.org/10.1016/j.image.2020.115917
Laakom, F., Raitoharju, J.
, Iosifidis, A., Tuna, U., Nikkanen, J. & Gabbouj, M. (2020).
Probabilistic Color Constancy. I
2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings (s. 978-982). Artikel 9190893 IEEE.
https://doi.org/10.1109/ICIP40778.2020.9190893
Krestenitis, M., Passalis, N.
, Iosifidis, A., Gabbouj, M. & Tefas, A. (2020).
Recurrent bag-of-features for visual information analysis.
Pattern Recognition,
106, Artikel 107380.
https://doi.org/10.1016/j.patcog.2020.107380
Hansen, O. L. P., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2020).
Species-level image classification with convolutional neural network enables insect identification from habitus images.
Ecology and Evolution,
10(2), 737-747.
https://doi.org/10.1002/ece3.5921
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal Bag-of-Features Learning for Predicting Mid Price Movements using High Frequency Limit Order Book Data.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(6), 774-785.
https://doi.org/10.1109/TETCI.2018.2872598
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data.
Pattern Recognition Letters,
136, 183-189.
https://doi.org/10.1016/j.patrec.2020.06.006
Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Using Deep Learning for price prediction by exploiting stationary limit order book features.
Applied Soft Computing Journal,
93, Artikel 106401.
https://doi.org/10.1016/j.asoc.2020.106401
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences (PNAS),
118(2), Artikel e2002545117.
https://doi.org/10.1073/pnas.2002545117
Cao, G.
, Iosifidis, A., Gabbouj, M., Raghavan, V. & Gottumukkala, R. (2021).
Deep Multi-view Learning to Rank.
IEEE Transactions on Knowledge and Data Engineering,
33(4), 1426-1438. Artikel 8845659.
https://doi.org/10.1109/TKDE.2019.2942590
Kiranyaz, S., Malik, J., Abdallah, H. B., Ince, T.
, Iosifidis, A. & Gabbouj, M. (2021).
Exploiting heterogeneity in operational neural networks by synaptic plasticity.
Neural Computing and Applications,
33(13), 7997-8015.
https://doi.org/10.1007/s00521-020-05543-w
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0
Gautam, C., Tiwari, A., Mishra, P. K., Suresh, S.
, Iosifidis, A. & Tanveer, M. (2021).
Graph-Embedded Multi-Layer Kernel Ridge Regression for One-Class Classification.
Cognitive Computation,
13(2), 552-569.
https://doi.org/10.1007/s12559-020-09804-7
Laakom, F., Raitoharju, J., Nikkanen, J.
, Iosifidis, A. & Gabbouj, M. (2021).
INTEL-TAU: A Color Constancy Dataset.
IEEE Access,
9, 39560-39567. Artikel 9371681.
https://doi.org/10.1109/ACCESS.2021.3064382
Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A. & Larsen, P. G. (2021).
Introduction to Digital Twin Engineering. I C. R. Martin, M. J. Blas & A. I. Psijas (red.),
2021 Annual Modeling and Simulation Conference (ANNSIM) (s. 1-12). IEEE.
https://doi.org/10.23919/ANNSIM52504.2021.9552135
Bajovic, D.
, Bakhtiarnia, A., Bravos, G., Brutti, A., Burkhardt, F., Cauchi, D., Chazapis, A., Cianco, C., Dall'Asen, N., Delic, V., Dimou, C., Djokic, D., Escobar-Molero, A.
, Esterle, L., Eyben, F., Farella, E., Festi, T., Geromitsos, A., Giakoumakis, G. ... Zammit, J. (2021).
MARVEL: Multimodal Extreme Scale Data Analytics for Smart Cities Environments. I
2021 International Balkan Conference on Communications and Networking, BalkanCom 2021 (s. 143-147). IEEE.
https://doi.org/10.1109/BalkanCom53780.2021.9593258
Tran, D. T., Yamac, M., Degerli, A., Gabbouj, M.
& Iosifidis, A. (2021).
Multilinear compressive learning.
IEEE Transactions on Neural Networks and Learning Systems,
32(4), 1512-1524. Artikel 9070152.
https://doi.org/10.1109/TNNLS.2020.2984831