Legaard, C. M., Schranz, T., Schweiger, G., Drgona, J., Falay, B.
, Gomes, C., Iosifidis, A., Abkar, M. & Larsen, P. G. (2023).
Constructing Neural Network Based Models for Simulating Dynamical Systems.
ACM Computing Surveys,
55(11), 1-34. Artikel 236.
https://doi.org/10.1145/3567591
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Artikel 075154.
https://doi.org/10.1063/5.0160977
Laakom, F., Raitoharju, J.
, Iosifidis, A. & Gabbouj, M. (2023).
Learning Distinct Features Helps, Provably. I D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis & F. Bonchi (red.),
Machine Learning and Knowledge Discovery in Databases: Research Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part II (s. 206-222). Springer.
https://doi.org/10.1007/978-3-031-43415-0_13
Shabani, M., Magris, M., Tzagkarakis, G., Kanniainen, J.
& Iosifidis, A. (2023).
Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots.
Neural Computing and Applications,
35(25), 18519–18531.
https://doi.org/10.1007/s00521-023-08674-y
Baltakys, K., Baltakienė, M.
, Heidari, N., Iosifidis, A. & Kanniainen, J. (2023).
Predicting the trading behavior of socially connected investors: Graph neural network approach with implications to market surveillance.
Expert Systems with Applications,
228, Artikel 120285.
https://doi.org/10.1016/j.eswa.2023.120285
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. I H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (red.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Kakavandi, F., Gomes, C., de Reus, R., Badstue, J.
, Jensen, J. L., Larsen, P. G. & Iosifidis, A. (2023).
Towards Developing a Digital Twin for a Manufacturing Pilot Line: An Industrial Case Study. I E. Karaarslan, Ö. Aydin, Ü. Cali & M. Challenger (red.),
Digital Twin Driven Intelligent Systems and Emerging Metaverse (s. 39-64). Springer.
https://doi.org/10.1007/978-981-99-0252-1_2
Angelov, P., Bernardi, M. L., Nardini, F. M., Pecori, R., Valerio, L., Dini, P., Ashraf, S., Aversano, L., Bianchini, M., Brutti, A., Bukovsky, I., Cagnoni, S., Cao, J., Cimitile, M., Dazzi, P., Iammarino, M.
, Iosifidis, A., Michahelles, F., Mora, A. ... Welsh, M. (2024).
PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence - Welcome and Committees. I
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (s. 34-35). IEEE.
https://doi.org/10.1109/PerComWorkshops59983.2024.10503466
Gomes, C., Lucani Rötter, D. E., Iosifidis, A., Feng, H., Ejersbo, H.
& Frasheri, M. (2024).
Sensing and Communication of Data from the Physical Twin. I J. Fitzgerald, C. Gomes & P. G. Larsen (red.),
The Engineering of Digital Twins (s. 147-171). Springer.
https://doi.org/10.1007/978-3-031-66719-0_7#citeas
Frasheri, M., Katsaros, P.
, Iosifidis, A., Hansen, S. T., Gomes, C., Evans, V. T. & Larsen, P. G. (2024).
System Monitoring through a Digital Twin. I J. Fitzgerald, C. Gomes & P. G. Larsen (red.),
The Engineering of Digital Twins (s. 189-207). Springer.
https://doi.org/10.1007/978-3-031-66719-0_9
Oleksiienko, I., Nousi, P., Passalis, N., Tefas, A.
& Iosifidis, A. (2024).
Vpit: real-time embedded single object 3D tracking using voxel pseudo images.
Neural Computing and Applications,
36(32), 20341-20354.
https://doi.org/10.1007/s00521-024-10259-2