Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Artikel 075154.
https://doi.org/10.1063/5.0160977
Angelov, P., Bernardi, M. L., Nardini, F. M., Pecori, R., Valerio, L., Dini, P., Ashraf, S., Aversano, L., Bianchini, M., Brutti, A., Bukovsky, I., Cagnoni, S., Cao, J., Cimitile, M., Dazzi, P., Iammarino, M.
, Iosifidis, A., Michahelles, F., Mora, A. ... Welsh, M. (2024).
PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence - Welcome and Committees. I
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (s. 34-35). IEEE.
https://doi.org/10.1109/PerComWorkshops59983.2024.10503466
Ärje, J., Kärkkäinen, S., Meissner, K.
, Iosifidis, A., Ince, T., Gabbouj, M. & Kiranyaz, S. (2017).
The effect of automated taxa identification errors on biological indices.
Expert Systems with Applications,
72, 108-120.
https://doi.org/10.1016/j.eswa.2016.12.015
Ärje, J., Milioris, D., Tran, D. T., Jepsen, J. U., Raitoharju, J., Gabbouj, M.
, Iosifidis, A. & Høye, T. T. (2019).
Automatic Flower Detection and Classification System Uing a Light-Weight Convolutional Neural Network. I
27th European Signal Processing Conference EUSIPCO 2019 IEEE.
http://eusipco2019.org/Proceedings/papertitles.html
Ärje, J., Raitoharju, J.
, Iosifidis, A., Tirronen, V., Meissner, K., Gabbouj, M., Kiranyaz, S. & Kärkkäinen, S. (2020).
Human experts vs. machines in taxa recognition.
Signal Processing: Image Communication,
87, Artikel 115917.
https://doi.org/10.1016/j.image.2020.115917
Ärje, J., Melvad, C., Jeppesen, M. R., Madsen, S. A., Raitoharju, J., Rasmussen, M. S.
, Iosifidis, A., Tirronen, V., Gabbouj, M., Meissner, K.
& Høye, T. T. (2020).
Automatic image-based identification and biomass estimation of invertebrates.
Methods in Ecology and Evolution,
11(8), 922-931.
https://doi.org/10.1111/2041-210X.13428
Bajovic, D.
, Bakhtiarnia, A., Bravos, G., Brutti, A., Burkhardt, F., Cauchi, D., Chazapis, A., Cianco, C., Dall'Asen, N., Delic, V., Dimou, C., Djokic, D., Escobar-Molero, A.
, Esterle, L., Eyben, F., Farella, E., Festi, T., Geromitsos, A., Giakoumakis, G. ... Zammit, J. (2021).
MARVEL: Multimodal Extreme Scale Data Analytics for Smart Cities Environments. I
2021 International Balkan Conference on Communications and Networking, BalkanCom 2021 (s. 143-147). IEEE.
https://doi.org/10.1109/BalkanCom53780.2021.9593258
Baltakys, K., Baltakienė, M.
, Heidari, N., Iosifidis, A. & Kanniainen, J. (2023).
Predicting the trading behavior of socially connected investors: Graph neural network approach with implications to market surveillance.
Expert Systems with Applications,
228, Artikel 120285.
https://doi.org/10.1016/j.eswa.2023.120285
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Böttjer, T., Tola, D., Kakavandi, F., Wewer, C. R., Ramanujan, D., Gomes, C., Larsen, P. G. & Iosifidis, A. (2023).
A review of unit level digital twin applications in the manufacturing industry.
CIRP Journal of Manufacturing Science and Technology,
45, 162-189.
https://doi.org/10.1016/j.cirpj.2023.06.011
Cao, G.
, Iosifidis, A., Gabbouj, M., Raghavan, V. & Gottumukkala, R. (2021).
Deep Multi-view Learning to Rank.
IEEE Transactions on Knowledge and Data Engineering,
33(4), 1426-1438. Artikel 8845659.
https://doi.org/10.1109/TKDE.2019.2942590
Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A. & Larsen, P. G. (2021).
Introduction to Digital Twin Engineering. I C. R. Martin, M. J. Blas & A. I. Psijas (red.),
2021 Annual Modeling and Simulation Conference (ANNSIM) (s. 1-12). IEEE.
https://doi.org/10.23919/ANNSIM52504.2021.9552135
Frasheri, M., Katsaros, P.
, Iosifidis, A., Hansen, S. T., Gomes, C., Evans, V. T. & Larsen, P. G. (2024).
System Monitoring through a Digital Twin. I J. Fitzgerald, C. Gomes & P. G. Larsen (red.),
The Engineering of Digital Twins (s. 189-207). Springer.
https://doi.org/10.1007/978-3-031-66719-0_9
Gautam, C., Tiwari, A., Mishra, P. K., Suresh, S.
, Iosifidis, A. & Tanveer, M. (2021).
Graph-Embedded Multi-Layer Kernel Ridge Regression for One-Class Classification.
Cognitive Computation,
13(2), 552-569.
https://doi.org/10.1007/s12559-020-09804-7
Gomes, C., Lucani Rötter, D. E., Iosifidis, A., Feng, H., Ejersbo, H.
& Frasheri, M. (2024).
Sensing and Communication of Data from the Physical Twin. I J. Fitzgerald, C. Gomes & P. G. Larsen (red.),
The Engineering of Digital Twins (s. 147-171). Springer.
https://doi.org/10.1007/978-3-031-66719-0_7#citeas
Hansen, O. L. P., Svenning, J.-C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2019).
Image data used for publication "Species-level image classification with convolutional neural network enable insect identification from habitus images". Datasæt
https://doi.org/10.5281/zenodo.3549369
Hansen, O. L. P., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H.
, Iosifidis, A., Price, B. W.
& Høye, T. T. (2020).
Species-level image classification with convolutional neural network enables insect identification from habitus images.
Ecology and Evolution,
10(2), 737-747.
https://doi.org/10.1002/ece3.5921