Nousi, P., Tsantekidis, A., Passalis, N., Ntakaris, A., Kanniainen, J., Tefas, A., Gabbouj, M.
& Iosifidis, A. (2019).
Machine Learning for Forecasting Mid Price Movement using Limit Order Book Data.
IEEE Access,
7, 64722 - 64736 . Artikel 8713851.
https://doi.org/10.1109/ACCESS.2019.2916793
Ntakaris, A.
, Magris, M., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2018).
Benchmark dataset for mid-price forecasting of limit order book data with machine learning methods.
Journal of Forecasting,
37(8), 852-866.
https://doi.org/10.1002/for.2543
Ntakaris, A.
, Mirone, G., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Feature Engineering for Mid-Price Prediction with Deep Learning.
IEEE Access,
7, 82390 - 82412. Artikel 8743410.
https://doi.org/10.1109/ACCESS.2019.2924353
Oleksiienko, I., Nousi, P., Passalis, N., Tefas, A.
& Iosifidis, A. (2024).
Vpit: real-time embedded single object 3D tracking using voxel pseudo images.
Neural Computing and Applications,
36(32), 20341-20354.
https://doi.org/10.1007/s00521-024-10259-2
Passalis, N., Tsantekidis, A., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2017).
Time-series Classification using Neural Bag-of-Features.
Proceedings of the European Signal Processing Conference,
2017, 311-315.
https://doi.org/10.23919/EUSIPCO.2017.8081217
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. I
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (s. 7545-7549). Artikel 8682297 IEEE.
https://doi.org/10.1109/ICASSP.2019.8682297
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal Bag-of-Features Learning for Predicting Mid Price Movements using High Frequency Limit Order Book Data.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(6), 774-785.
https://doi.org/10.1109/TETCI.2018.2872598
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Temporal logistic neural Bag-of-Features for financial time series forecasting leveraging limit order book data.
Pattern Recognition Letters,
136, 183-189.
https://doi.org/10.1016/j.patrec.2020.06.006
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Adaptive Normalization for Forecasting Limit Order Book Data Using Convolutional Neural Networks. I
2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings (s. 1713-1717). Artikel 9054321 IEEE.
https://doi.org/10.1109/ICASSP40776.2020.9054321
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Deep Adaptive Input Normalization for Time Series Forecasting.
IEEE Transactions on Neural Networks and Learning Systems,
31(9), 3760-3765.
https://doi.org/10.1109/TNNLS.2019.2944933
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0
Patrona, F.
, Iosifidis, A., Tefas, A., Nikolaidis, N. & Pitas, I. (2016).
Visual Voice Activity Detection in the Wild.
IEEE Transactions on Multimedia,
18(6), 967-977. Artikel 7420734.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7420734
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. I H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (red.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Raitoharju, J., Riabchenko, E., Meissner, K., Ahmad, I.
, Iosifidis, A., Gabbouj, M. & Kiranyaz, S. (2017).
Data Enrichment in Fine-Grained Classification of Aquatic Macroinvertebrates. I
Proceedings - 2nd Workshop on Computer Vision for Analysis of Underwater Imagery, CVAUI 2016 - In Conjunction with International Conference on Pattern Recognition, ICPR 2016 (s. 43-48). Artikel 7813092 IEEE.
https://doi.org/10.1109/CVAUI.2016.20
Raitoharju, J., Riabchenko, E., Ahmad, I.
, Iosifidis, A., Gabbouj, M., Kiranyaz, S., Tirronen, V., Ärje, J., Kärkkäinen, S. & Meissner, K. (2018).
Benchmark Database for Fine-Grained Image Classification of Benthick Macroinvertebrates.
Image and Vision Computing,
78, 73-83.
https://doi.org/10.1016/j.imavis.2018.06.005
Riabchenko, E., Meissner, K., Ahmad, I.
, Iosifidis, A., Tirronen, V., Gabbouj, M. & Kiranyaz, S. (2016).
Learned vs. Engineered Features for Fine-Grained Classification of Aquatic Macroinvertebrates. I
2016 23rd International Conference on Pattern Recognition, ICPR 2016 (s. 2276-2281). Artikel 7899975 IEEE.
https://doi.org/10.1109/ICPR.2016.7899975