Malik, J., Kiranyaz, S., Al-Raoush, R. I., Monga, O., Garnier, P., Foufou, S., Bouras, A.
, Iosifidis, A., Gabbouj, M. & Baveye, P. C. (2022).
3D Quantum Cuts for Automatic Segmentation of Porous Media in Tomography Images.
Computers & Geosciences,
159, [105017].
https://doi.org/10.1016/j.cageo.2021.105017
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Adaptive Normalization for Forecasting Limit Order Book Data Using Convolutional Neural Networks. I
2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings (s. 1713-1717). [9054321] IEEE.
https://doi.org/10.1109/ICASSP40776.2020.9054321
Ärje, J., Milioris, D., Tran, D. T., Jepsen, J. U., Raitoharju, J., Gabbouj, M.
, Iosifidis, A. & Høye, T. T. (2019).
Automatic Flower Detection and Classification System Uing a Light-Weight Convolutional Neural Network. I
27th European Signal Processing Conference EUSIPCO 2019 IEEE. Proceedings of the European Signal Processing Conference
http://eusipco2019.org/Proceedings/papertitles.html
Ärje, J., Melvad, C., Jeppesen, M. R., Madsen, S. A., Raitoharju, J., Rasmussen, M. S.
, Iosifidis, A., Tirronen, V., Gabbouj, M., Meissner, K.
& Høye, T. T. (2020).
Automatic image-based identification and biomass estimation of invertebrates.
Methods in Ecology and Evolution,
11(8), 922-931.
https://doi.org/10.1111/2041-210X.13428
Laakom, F., Passalis, N., Raitoharju, J., Nikkanen, J., Tefas, A.
, Iosifidis, A. & Gabbouj, M. (2020).
Bag of Color Features for Color Constancy.
IEEE Transactions on Image Processing,
29, 7722-7734. [9130881].
https://doi.org/10.1109/TIP.2020.3004921
Raitoharju, J., Riabchenko, E., Ahmad, I.
, Iosifidis, A., Gabbouj, M., Kiranyaz, S., Tirronen, V., Ärje, J., Kärkkäinen, S. & Meissner, K. (2018).
Benchmark Database for Fine-Grained Image Classification of Benthick Macroinvertebrates.
Image and Vision Computing,
78, 73-83.
https://doi.org/10.1016/j.imavis.2018.06.005
Iosifidis, A., Tefas, A. & Pitas, I. (2014).
Computational Intelligence Approaches for Digital Media Analysis and Description. I J-S. Pan, V. Snasel, E. S. Corchado, A. Abraham & S-L. Wang (red.),
Intelligent Data analysis and its Applications, Volume II (Bind 2, s. 263-272). Springer. Advances in Intelligent Systems and Computing Nr. 298
https://doi.org/10.1007/978-3-319-07773-4_26
Raitoharju, J., Riabchenko, E., Meissner, K., Ahmad, I.
, Iosifidis, A., Gabbouj, M. & Kiranyaz, S. (2017).
Data Enrichment in Fine-Grained Classification of Aquatic Macroinvertebrates. I
Computer Vision for Analysis of Underwater Imagery (CVAUI), 2016 ICPR 2nd Workshop on (s. 43-48). IEEE.
https://doi.org/10.1109/CVAUI.2016.20
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Ijenction Moulds. I A-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer. Lecture Notes in Mechanical Engineering
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings
of the Changeable, Agile, Reconfigurable and Virtual Production
Conference and the World Mass Customization & Personalization
Conference (s. 431-439). Springer. Lecture Notes in Mechanical Engineering
https://doi.org/10.1007/978-3-030-90700-6_49
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Deep Adaptive Input Normalization for Time Series Forecasting.
IEEE Transactions on Neural Networks and Learning Systems,
31(9), 3760-3765.
https://doi.org/10.1109/TNNLS.2019.2944933
Cao, G.
, Iosifidis, A., Gabbouj, M., Raghavan, V. & Gottumukkala, R. (2021).
Deep Multi-view Learning to Rank.
IEEE Transactions on Knowledge and Data Engineering,
33(4), 1426-1438. [8845659].
https://doi.org/10.1109/TKDE.2019.2942590
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. I
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (s. 7545-7549). [8682297] IEEE. I E E E International Conference on Acoustics, Speech and Signal Processing. Proceedings Bind 2019 May
https://doi.org/10.1109/ICASSP.2019.8682297
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences of the United States of America,
118(2), [e2002545117].
https://doi.org/10.1073/pnas.2002545117
Leporowski, B. T., Tola, D., Hansen, C.
& Iosifidis, A. (2022).
Detecting Faults during Automatic Screwdriving: A Dataset and Use Case of Anomaly Detection for Automatic Screwdriving. I A-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference (CARV2021) and the 10th World Mass Customization & Personalization Conference (MCPC2021), Aalborg, Denmark, October/November 2021 (s. 224-232). Springer. Lecture Notes in Mechanical Engineering
https://www.springerprofessional.de/en/detecting-faults-during-automatic-screwdriving-a-dataset-and-use/19816820