Legaard, C. M., Schranz, T., Schweiger, G., Drgona, J., Falay, B.
, Gomes, C., Iosifidis, A., Abkar, M. & Larsen, P. G. (2023).
Constructing Neural Network Based Models for Simulating Dynamical Systems.
ACM Computing Surveys,
55(11), 1-34. Artikel 236.
https://doi.org/10.1145/3567591
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Artikel 075154.
https://doi.org/10.1063/5.0160977
Raitoharju, J., Riabchenko, E., Meissner, K., Ahmad, I.
, Iosifidis, A., Gabbouj, M. & Kiranyaz, S. (2017).
Data Enrichment in Fine-Grained Classification of Aquatic Macroinvertebrates. I
Proceedings - 2nd Workshop on Computer Vision for Analysis of Underwater Imagery, CVAUI 2016 - In Conjunction with International Conference on Pattern Recognition, ICPR 2016 (s. 43-48). Artikel 7813092 IEEE.
https://doi.org/10.1109/CVAUI.2016.20
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2020).
Deep Adaptive Input Normalization for Time Series Forecasting.
IEEE Transactions on Neural Networks and Learning Systems,
31(9), 3760-3765.
https://doi.org/10.1109/TNNLS.2019.2944933
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences (PNAS),
118(2), Artikel e2002545117.
https://doi.org/10.1073/pnas.2002545117
Cao, G.
, Iosifidis, A., Gabbouj, M., Raghavan, V. & Gottumukkala, R. (2021).
Deep Multi-view Learning to Rank.
IEEE Transactions on Knowledge and Data Engineering,
33(4), 1426-1438. Artikel 8845659.
https://doi.org/10.1109/TKDE.2019.2942590
Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Deep Temporal Logistic Bag-of-features for Forecasting High Frequency Limit Order Book Time Series. I
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (s. 7545-7549). Artikel 8682297 IEEE.
https://doi.org/10.1109/ICASSP.2019.8682297
Leporowski, B. T., Tola, D., Hansen, C.
& Iosifidis, A. (2022).
Detecting Faults during Automatic Screwdriving: A Dataset and Use Case of Anomaly Detection for Automatic Screwdriving. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 224-232). Springer.
https://doi.org/10.1007/978-3-030-90700-6_25
Kiranyaz, S., Malik, J., Abdallah, H. B., Ince, T.
, Iosifidis, A. & Gabbouj, M. (2021).
Exploiting heterogeneity in operational neural networks by synaptic plasticity.
Neural Computing and Applications,
33(13), 7997-8015.
https://doi.org/10.1007/s00521-020-05543-w
Mademlis, I.
, Iosifidis, A., Tefas, A., Nikolaidis, N. & Pitas, I. (2015).
Exploiting Stereoscopic Disparity for Augmenting Human Activity Recognition Performance.
Multimedia Tools and Applications,
75(19), 11641-11660.
https://doi.org/10.1007/s11042-015-2719-x
Ntakaris, A.
, Mirone, G., Kanniainen, J., Gabbouj, M.
& Iosifidis, A. (2019).
Feature Engineering for Mid-Price Prediction with Deep Learning.
IEEE Access,
7, 82390 - 82412. Artikel 8743410.
https://doi.org/10.1109/ACCESS.2019.2924353