Asif, M. R., Kass, M. A., Herpe, M., Rawlinson, Z., Westerhoff, R.
, Larsen, J. J. & Christiansen, A. V. (2025).
Comparative analysis of deep learning and traditional airborne electromagnetic data processing: A case study.
Geophysics,
90(3), WA103-WA112.
https://doi.org/10.1190/geo2024-0282.1
Asif, M. R., Kass, A., Westerhoff, R., Rawlinson, Z.
& Christiansen, A. V. (2023).
Automated data processing of a large-scale airborne time-domain electromagnetic survey by a deep learning expert system. Afhandling præsenteret på 8th International Workshop on Airborne Electromagnetics, Queensland, Australien.
Asif, M. R., Kass, A., Westerhoff, R., Rawlinson, Z.
, Christiansen, A. V. & Bording, T. S. (2023).
Automated Processing of a Large-Scale Airborne Electromagnetic Survey by Deep Learning. Afhandling præsenteret på NSG2023 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh , Storbritannien.
https://doi.org/10.3997/2214-4609.202320057
Asif, M. R., Foged, N., Bording, T. S., Larsen, J. J. & Christiansen, A. V. (2023).
DL-RMD: a geophysically constrained electromagnetic resistivity model database for deep learning applications.
Earth System Science Data,
15(3), 1389-1401.
https://doi.org/10.5194/essd-2022-345,
https://doi.org/10.5194/essd-15-1389-2023
Meldgaard Madsen, L., Asif, M. R., Maurya, P. K., Kühl, A. K., Domenzain, D., Jensen, C., Martin, T., Bastani, M. & Persson, L. (2023).
Comparison of tTEM-IP and ERT-IP: Cases from Mine Tailing Sites in Sweden. Abstract fra NSG2023 29th European Meeting of Environmental and Engineering Geophysics, Edinburgh , Storbritannien.
https://doi.org/10.3997/2214-4609.202320114
Rafiei Foroushani, M., Tran, D. T.
& Iosifidis, A. (2023).
Recognition of Defective Mineral Wool Using Pruned ResNet Models. I H. Dorksen, S. Scanzio, J. Jasperneite, L. Wisniewski, K. F. Man, T. Sauter, L. Seno, H. Trsek & V. Vyatkin (red.),
2023 IEEE 21st International Conference on Industrial Informatics (INDIN) IEEE.
https://doi.org/10.1109/INDIN51400.2023.10217993
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G.
, Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data.
IEEE Transactions on Geoscience and Remote Sensing,
60, Artikel 4503610.
https://doi.org/10.1109/TGRS.2021.3076121
Asif, M. R., Maurya, P. K., Foged, N., Larsen, J. J., Auken, E. & Christiansen, A. V. (2022).
Automated transient electromagnetic data processing for ground-based and airborne systems by a deep learning expert system.
IEEE Transactions on Geoscience and Remote Sensing,
60, Artikel 5919814.
https://doi.org/10.1109/TGRS.2022.3202304
Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. I
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (s. 6). J and N Group, Ltd..
Asif, M. R., Foged, N., Maurya, P. K., Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data.
Geophysics,
87(4), E177-E187.
https://doi.org/10.1190/geo2021-0335.1
Ahmadi, H.
, Rafiei Foroushani, M., Afshari-Igder, M.
, Gheisarnejad Chirani, M. & Khooban, M. H. (2021).
An Energy Efficient Solution for Fuel Cell Heat Recovery in Zero-Emission Ferry Boats: Deep Deterministic Policy Gradient.
I E E E Transactions on Vehicular Technology,
70(8), 7571-7581. Artikel 9477203.
https://doi.org/10.1109/TVT.2021.3094899.
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E. & Larsen, J. J. (2021).
Effect of Data Pre-Processing on the Performance of Neural Networks for 1-D Transient Electromagnetic Forward Modeling.
IEEE Access,
9, 34635-34646.
https://doi.org/10.1109/ACCESS.2021.3061761
Bording, T. S., Asif, M. R., Barfod, A. S., Larsen, J. J., Zhang, B., Grombacher, D. J., Christiansen, A. V., Engebretsen, K. W., Pedersen, J. B., Maurya, P. K. & Auken, E. (2021).
Machine learning based fast forward modelling of ground-based time-domain electromagnetic data.
Journal of Applied Geophysics,
187, Artikel 104290.
https://doi.org/10.1016/j.jappgeo.2021.104290
Asif, M. R., Bording, T. S., Barfod, A. S., Auken, E. & Larsen, J. J. (2020).
Effect of data normalization on neural networks for the forward modelling of transient electromagnetic data. I
26th European Meeting of Environmental and Engineering Geophysics, Held at Near Surface Geoscience 2020 Artikel 061 European Association of Geoscientists and Engineers, EAGE.
https://doi.org/10.3997/2214-4609.202020061
Asif, M. R., Bording, T. S., Barfod, A. A. S., Zhang, B., Larsen, J. J. & Auken, E. (2020).
Improving computational efficiency of forward modelling for ground-based time-domain electromagnetic data using neural networks. Abstract fra EGU:General assembly 2020 , Vienna , Østrig.
https://doi.org/10.5194/egusphere-egu2020-7067
Banaei, M., Ghanami, F.
, Rafiei Foroushani, M., Boudjadar, J. & Khooban, M. H. (2020).
Energy Management of Hybrid Diesel/Battery Ships in Multidisciplinary Emission Policy Areas.
Energies,
13(16), Artikel 4179.
https://doi.org/10.3390/en13164179
Farsizadeh, H., Gheisarnejad, M., Mosayebi, M.
, Rafiei Foroushani, M. & Khooban, M. H. (2020).
An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid.
IEEE Transactions on Circuits and Systems II: Express Briefs,
67(6), 1104-1108. Artikel 8764402.
https://doi.org/10.1109/TCSII.2019.2928814
Letafat, A.
, Rafiei, M., Ardeshiri, M., Sheikh, M.
, Banaei, M., Boudjadar, J. & Khooban, M. H. (2020).
An Efficient and Cost-Effective Power Scheduling in Zero-Emission Ferry Ships.
Complexity,
2020, Artikel 6487873.
https://doi.org/10.1155/2020/6487873
Letafat, A.
, Rafiei Foroushani, M., Sheikh, M., Afshari-Igder, M.
, Banaei, M., Boudjadar, J. & Khooban, M. H. (2020).
Simultaneous energy management and optimal components sizing of a zero-emission ferry boat.
Journal of Energy Storage,
28, Artikel 101215.
https://doi.org/10.1016/j.est.2020.101215
Asif, M. R., Qi, C., Wang, T., Fareed, M. S. & Khan, S. (2019).
License plate detection for multi-national vehicles – a generalized approach.
Multimedia Tools and Applications,
78(24), 35585-35606.
https://doi.org/10.1007/s11042-019-08199-4
Asif, M. R., Qi, C., Wang, T., Sadiq Fareed, M. & Ali Reza, S. (2019).
License Plate Detection for Multi-national Vehicles: An Illumination Invariant Approach in Multi-lane Environment.
Computers & Electrical Engineering,
78, 132-147.
https://doi.org/10.1016/j.compeleceng.2019.07.012
Rafiei Foroushani, M., Niknam, T., Aghaei, J., Shafie-khah, M. & P.S.Catalão, J. (2018).
Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine.
IEEE Transactions on Smart Grid,
9(6), 6961 - 6971. Artikel 8298533.
https://doi.org/10.1109/TSG.2018.2807845
Asif, M. R., Qi, C., Hussain, S., Sadiq Fareed, M. & Khan, S. (2017).
Multinational vehicle license plate detection in complex backgrounds.
Journal of Visual Communication and Image Representation,
46, 176-186.
https://doi.org/10.1016/j.jvcir.2017.03.020