Raza, M.
, Naveed, K., Akram, A., Salem, N., Afaq, A., Madni, H. A., Khan, M. A. U. & Mui-Zzud-din (2021).
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
PLOS ONE,
16(12), Artikel e0261698.
https://doi.org/10.1371/journal.pone.0261698
Asif, M. R., Foged, N., Maurya, P. K., Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data.
Geophysics,
87(4), E177-E187.
https://doi.org/10.1190/geo2021-0335.1
ur Rehman, N., Ehsan, S., Abdullah, S. M. U., Akhtar, M. J., Mandic, D. P. & McDonald-Maier, K. D. (2015).
Multi-Scale pixel-based image fusion using multivariate empirical mode decomposition.
Sensors (Switzerland),
15(5), 10923-10947.
https://doi.org/10.3390/s150510923
Looney, D.
, Rehman, N. U., Mandic, D., Rutkowski, T. M., Heidenreich, A. & Beyer, D. (2009).
Conditioning multimodal information for smart environments. I
2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC) IEEE.
https://doi.org/10.1109/icdsc.2009.5289373
Park, C., Looney, D.
, Rehman, N. U., Ahrabian, A. & Mandic, D. P. (2013).
Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
21(1), 10-22.
https://doi.org/10.1109/tnsre.2012.2229296
Rehman, N., Ehsan, S., Naveed, K., McDonald-Maier, K. D. & Safdar, M. W. (2015).
Dynamically sampled multivariate empirical mode decomposition.
Electronics Letters,
51(24), 2049-2051.
https://doi.org/10.1049/el.2015.1176
Rehman, N., Khan, M. M., Sohaib, M. I., Jehanzaib, M., Ehsan, S. & McDonald-Maier, K. (2014).
Image fusion using multivariate and multidimensional EMD. I
2014 IEEE International Conference on Image Processing (ICIP) IEEE.
https://doi.org/10.1109/icip.2014.7026035
Khan, N., Baig, F., Nawaz, S.
, Rehman, N. U. & Sharma, S. (2016).
Analysis of Power Quality Signals Using an Adaptive Time-Frequency Distribution.
Energies,
9(11), 933.
https://doi.org/10.3390/en9110933
Ehsan, S., Clark, A., Leonardis, A.
, Rehman, N. U., Khaliq, A., Fasli, M. & McDonald-Maier, K. (2016).
A Generic Framework for Assessing the Performance Bounds of Image Feature Detectors.
Remote Sensing,
8(11), 928.
https://doi.org/10.3390/rs8110928
Rehman, N. U., Abbas, S. Z., Asif, A., Javed, A., Naveed, K. & Mandic, D. P. (2017).
Translation invariant multi-scale signal denoising based on goodness-of-fit tests.
Signal Processing,
131, 220-234.
https://doi.org/10.1016/j.sigpro.2016.08.019
Zahra, A., Kanwal, N.
, Rehman, N. U., Ehsan, S. & McDonald-Maier, K. D. (2017).
Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition.
Computers in Biology and Medicine,
88, 132-141.
https://doi.org/10.1016/j.compbiomed.2017.07.010
Ferrarini, B., Ehsan, S., Leonardis, A.
, Rehman, N. U. & McDonald-Maier, K. D. (2018).
Performance Characterization of Image Feature Detectors in Relation to the Scene Content Utilizing a Large Image Database.
IEEE Access,
6, 8564-8573.
https://doi.org/10.1109/access.2018.2795460
Malik, Q. W.
, Rehman, N. U., Gull, S., Ehsan, S. & McDonald-Maier, K. D. (2019).
FPGA-Based Real-Time Implementation of Bivariate Empirical Mode Decomposition.
Circuits, Systems, and Signal Processing,
38(1), 118-137.
https://doi.org/10.1007/s00034-018-0844-2
Khawaja, A., Khan, T. M., Naveed, K., Naqvi, S. S.
, Rehman, N. U. & Nawaz, S. J. (2019).
An Improved Retinal Vessel Segmentation Framework Using Frangi Filter Coupled With the Probabilistic Patch Based Denoiser.
IEEE Access,
7, 164344-164361.
https://doi.org/10.1109/access.2019.2953259
Saleem, S., Naqvi, S. S., Manzoor, T., Saeed, A.
, Rehman, N. U. & Mirza, J. (2019).
A Strategy for Classification of "Vaginal vs. Cesarean Section" Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings.
Frontiers in Physiology,
10.
https://doi.org/10.3389/fphys.2019.00246
Naveed, K., Shaukat, B., Ehsan, S., Mcdonald-Maier, K. D.
, Rehman, N. U. & Baghaie, A. (red.) (2019).
Multiscale image denoising using goodness-of-fit test based on EDF statistics.
P L o S One,
14(5), e0216197.
https://doi.org/10.1371/journal.pone.0216197
Sadiq, M. T., Yu, X., Yuan, Z., Aziz, M. Z.
, Rehman, N. U., Ding, W. & Xiao, G. (2022).
Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition.
IEEE Transactions on Emerging Topics in Computational Intelligence,
6(5), 1177-1189.
https://doi.org/10.1109/tetci.2022.3147030
Asif, M. R., Maurya, P. K., Christiansen, A. V., Larsen, J. J. & Auken, E. (2022).
Deep learning based expert system to automate time-domain electromagnetic data processing. I
34th Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP 2022 (s. 6). J and N Group, Ltd..
Grombacher, D., Griffiths, M. P., Liu, L., Vang, M. & Larsen, J. J. (2022).
Frequency Shifting Steady-State Surface NMR Signals to Avoid Problematic Narrowband-Noise Sources.
Geophysical Research Letters,
49(7), Artikel e2021GL097402.
https://doi.org/10.1029/2021GL097402
Khan, T. M., Khan, M. A. U.
, Rehman, N. U., Naveed, K., Afridi, I. U., Naqvi, S. S. & Raazak, I. (2022).
Width-wise vessel bifurcation for improved retinal vessel segmentation.
Biomedical Signal Processing and Control,
71(Part A), Artikel 103169.
https://doi.org/10.1016/j.bspc.2021.103169
Larsen, J. J., Langhof, R. B.
, Kjær, M. W., Vang, M., Liu, L., Griffiths, M. & Grombacher, D. (2022).
Efficient processing of surface NMR data with spectral analysis.
Geophysical Journal International,
229(1), 286-298.
https://doi.org/10.1093/gji/ggab472