Malik, J., Kiranyaz, S., Al-Raoush, R. I., Monga, O., Garnier, P., Foufou, S., Bouras, A.
, Iosifidis, A., Gabbouj, M. & Baveye, P. C. (2022).
3D Quantum Cuts for Automatic Segmentation of Porous Media in Tomography Images.
Computers & Geosciences,
159, [105017].
https://doi.org/10.1016/j.cageo.2021.105017
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G.
, Grombacher, D. J., Christiansen, A. V., Auken, E. & Larsen, J. J. (2022).
A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data.
IEEE Transactions on Geoscience and Remote Sensing,
60, [4503610].
https://doi.org/10.1109/TGRS.2021.3076121
Leporowski, B. T., Tola, D., Hansen, C.
& Iosifidis, A. (2022).
Detecting Faults during Automatic Screwdriving: A Dataset and Use Case of Anomaly Detection for Automatic Screwdriving. I A-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference (CARV2021) and the 10th World Mass Customization & Personalization Conference (MCPC2021), Aalborg, Denmark, October/November 2021 (s. 224-232). Springer. Lecture Notes in Mechanical Engineering
https://www.springerprofessional.de/en/detecting-faults-during-automatic-screwdriving-a-dataset-and-use/19816820
Grombacher, D., Griffiths, M. P., Liu, L., Vang, M. & Larsen, J. J. (2022).
Frequency Shifting Steady-State Surface NMR Signals to Avoid Problematic Narrowband-Noise Sources.
Geophysical Research Letters,
49(7), [e2021GL097402].
https://doi.org/10.1029/2021GL097402
Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Khan, T. M., Khan, M. A. U.
, Rehman, N. U., Naveed, K., Afridi, I. U., Naqvi, S. S. & Raazak, I. (2022).
Width-wise vessel bifurcation for improved retinal vessel segmentation.
Biomedical Signal Processing and Control,
71(Part A), [103169].
https://doi.org/10.1016/j.bspc.2021.103169
Nguyen, A. Q., Nguyen, H. T., Tran, V. C.
, Pham, H. X. & Pestana, J. (2021).
A Visual Real-time Fire Detection using Single Shot MultiBox Detector for UAV-based Fire Surveillance. I S. Bahk, P. Tran-Gia, J. Van der Spiegel & N. X. Quynh (red.),
2020 IEEE Eighth International Conference on Communications and Electronics (ICCE) (s. 338-343). IEEE.
https://doi.org/10.1109/ICCE48956.2021.9352080
Kass, M. A., Auken, E., Larsen, J. J. & Christiansen, A. V. (2021).
A towed magnetic gradiometer array for rapid, detailed imaging of utility, geological, and archaeological targets.
Geoscientific Instrumentation, Methods and Data Systems,
10(2), 313-323.
https://doi.org/10.5194/gi-10-313-2021
Ahmadi, H.
, Rafiei Foroushani, M., Afshari-Igder, M.
, Gheisarnejad Chirani, M. & Khooban, M. H. (2021).
An Energy Efficient Solution for Fuel Cell Heat Recovery in Zero-Emission Ferry Boats: Deep Deterministic Policy Gradient.
I E E E Transactions on Vehicular Technology,
70(8), 7571-7581.
https://doi.org/10.1109/TVT.2021.3094899.
Bjerge, K., Nielsen, J. B., Sepstrup, M. V., Helsing-Nielsen, F.
& Høye, T. T. (2021).
An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning.
Sensors (Switzerland),
21(2), [343].
https://doi.org/10.3390/s21020343
Gislum, R., Thomsen, I. K., Hansen, E. M., Mortensen, A. K., Larsen, R. & Olesen, J. E., (2021).
Analyser i pilotprojekt om biomasse på baggrund af data fra forsøgsår 2020, Nr. 2021-0206943, 18 s., maj 05, 2021. Rådgivningsnotat fra DCA – National Center for Fødevarer og Jordbrug
Larsen, J. J., Griffiths, M., Vang, M., Liu, L. & Grombacher, D. (2021).
Apsu - A compact surface NMR instrument for groundwater investigations.
SEG Technical Program Expanded Abstracts,
2021-September, 3135-3139.
https://doi.org/10.1190/segam2021-3582046.1
Tan, S., Mortensen, A. K., Ma, X.
, Boelt, B. & Gislum, R. (2021).
Assessment of grass lodging using texture and canopy height distribution features derived from UAV visual-band images.
Agricultural and Forest Meteorology,
308-309, [108541].
https://doi.org/10.1016/j.agrformet.2021.108541
Dyrmann, M., Mortensen, A. K., Linneberg, L.
, Høye, T. T. & Bjerge, K. (2021).
Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning.
Sensors (Switzerland),
21(18), [6126].
https://doi.org/10.3390/s21186126
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Ijenction Moulds. I A-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer. Lecture Notes in Mechanical Engineering
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings
of the Changeable, Agile, Reconfigurable and Virtual Production
Conference and the World Mass Customization & Personalization
Conference (s. 431-439). Springer. Lecture Notes in Mechanical Engineering
https://doi.org/10.1007/978-3-030-90700-6_49
Cao, G.
, Iosifidis, A., Gabbouj, M., Raghavan, V. & Gottumukkala, R. (2021).
Deep Multi-view Learning to Rank.
IEEE Transactions on Knowledge and Data Engineering,
33(4), 1426-1438. [8845659].
https://doi.org/10.1109/TKDE.2019.2942590
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F.
, Mann, H. M. R., Meissner, K.
, Melvad, C. & Raitoharju, J. (2021).
Deep learning and computer vision will transform entomology.
Proceedings of the National Academy of Sciences of the United States of America,
118(2), [e2002545117].
https://doi.org/10.1073/pnas.2002545117
Chen, Q., Lang, X., Lu, S.
, Rehman, N. U., Xie, L. & Su, H. (2021).
Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate Granger causality.
Computers and Chemical Engineering,
147, [107231].
https://doi.org/10.1016/j.compchemeng.2021.107231
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E. & Larsen, J. J. (2021).
Effect of Data Pre-Processing on the Performance of Neural Networks for 1-D Transient Electromagnetic Forward Modeling.
IEEE Access,
9, 34635-34646.
https://doi.org/10.1109/ACCESS.2021.3061761
Kiranyaz, S., Malik, J., Abdallah, H. B., Ince, T.
, Iosifidis, A. & Gabbouj, M. (2021).
Exploiting heterogeneity in operational neural networks by synaptic plasticity.
Neural Computing and Applications,
33(13), 7997-8015.
https://doi.org/10.1007/s00521-020-05543-w
Passalis, N., Kanniainen, J., Gabbouj, M.
, Iosifidis, A. & Tefas, A. (2021).
Forecasting Financial Time Series Using Robust Deep Adaptive Input Normalization.
Journal of Signal Processing Systems,
93(10), 1235-1251.
https://doi.org/10.1007/s11265-020-01624-0
Pham, X. H., Bozcan, I., Sarabakha, A., Haddadin, S.
& Kayacan, E. (2021).
GateNet: An Efficient Deep Neural Network Architecture for Gate Perception Using Fish-Eye Camera in Autonomous Drone Racing. Paper præsenteret ved 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prag, Tjekkiet.
https://sarabakha.info/files/papers/conference/IROS_2021.pdf
Gautam, C., Tiwari, A., Mishra, P. K., Suresh, S.
, Iosifidis, A. & Tanveer, M. (2021).
Graph-Embedded Multi-Layer Kernel Ridge Regression for One-Class Classification.
Cognitive Computation,
13(2), 552-569.
https://doi.org/10.1007/s12559-020-09804-7
Laakom, F., Raitoharju, J., Nikkanen, J.
, Iosifidis, A. & Gabbouj, M. (2021).
INTEL-TAU: A Color Constancy Dataset.
IEEE Access,
9, 39560-39567. [9371681].
https://doi.org/10.1109/ACCESS.2021.3064382