Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Dyrmann, M., Mortensen, A. K., Linneberg, L.
, Høye, T. T. & Bjerge, K. (2021).
Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning.
Sensors (Switzerland),
21(18), [6126].
https://doi.org/10.3390/s21186126
Farkhani, S., Skovsen, S. K., Dyrmann, M., Nyholm Jørgensen, R. & Karstoft, H. (2021).
Weed classification using explainable multi-resolution slot attention.
Sensors,
21(20), [6705].
https://doi.org/10.3390/s21206705
Gislum, R., Thomsen, I. K., Hansen, E. M., Mortensen, A. K., Larsen, R. & Olesen, J. E., (2021).
Analyser i pilotprojekt om biomasse på baggrund af data fra forsøgsår 2020, Nr. 2021-0206943, 18 s., maj 05, 2021. Rådgivningsnotat fra DCA – National Center for Fødevarer og Jordbrug
Gislum, R., Thomopoulos, S.
, Gyldengren, J. G., Mortensen, A. K. & Boelt, B. (2021).
The Use of Remote Sensing to Determine Nitrogen Status in Perennial Ryegrass (Lolium perenne L.) for Seed Production.
Nitrogen,
2(2), 229-243.
https://doi.org/10.3390/nitrogen2020015
Skovsen, S. K., Laursen, M. S., Kristensen, R. K., Rasmussen, J., Dyrmann, M., Eriksen, J., Gislum, R., Nyholm Jørgensen, R. & Karstoft, H. (2021).
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks.
Sensors,
21( 1), [175].
https://doi.org/10.3390/s21010175
Tan, S., Mortensen, A. K., Ma, X.
, Boelt, B. & Gislum, R. (2021).
Assessment of grass lodging using texture and canopy height distribution features derived from UAV visual-band images.
Agricultural and Forest Meteorology,
308-309, [108541].
https://doi.org/10.1016/j.agrformet.2021.108541
Farkhani, S., Skovsen, S. K., Mortensen, A. K., Laursen, M. S., Nyholm Jørgensen, R. & Karstoft, H. (2020).
Initial evaluation of enriching satellite imagery using sparse proximal sensing in precision farming. I C. M. U. Neale & A. Maltese (red.),
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII (Bind 11528). SPIE - International Society for Optical Engineering.
https://doi.org/10.1117/12.2573626
Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L-C. & Nyholm Jørgensen, R. (2020).
Open Plant Phenotype Database of Common Weeds in Denmark.
Remote Sensing,
12(8), [1246].
https://doi.org/10.3390/rs12081246
Thomsen, I. K., Hansen, E. M., Jensen, J. L., Larsen, R., Mortensen, A. K. & Gislum, R., (2020).
Revurdering af Landbrugsstyrelsens kontrolmodel 2019 (trappemodellen), Nr. 2020-0133641, 15 s., sep. 01, 2020.
Eriksen, J., Frandsen, T. S., Knudsen, L.
, Skovsen, S., Nyholm Jørgensen, R., Steen, K. A.
, Green, O. & Rasmussen, J. (2019).
Nitrogen fertilization of grass-clover leys. I O. Huguenin-Elie, B. Studer, R. Kölliker, D. Reheul, M. Probo, P. Barre, U. Feuerstein, I. Roldan-Ruiz, P. Mariotte & A. Hopkins (red.),
Improving sown grasslands through breeding and management: Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section "Fodder Crops and Amenity Grasses", Zürich, Switzerland, 24-27 June 2019 (s. 103-109). Wageningen Academic Publishers. Grassland Science in Europe Bind 24
Nyholm Jørgensen, R. (Producent), Laursen, M. S. (Producent), Teimouri, N. (Producent), Madsen, S. L. (Producent), Dyrmann, M. (Producent), Somerville, G. J. (Producent) & Mathiassen, S. K. (Producent). (2019).
RoboWeedMaps - Automated weed detection and mapping - Invited talk at SSWM 2019, SDU, Odense Denmark. Billeder, Video- og Lydoptagelser (digital), YouTube.
Skovsen, S., Laursen, M. S., Gislum, R., Eriksen, J., Dyrmann, M., Mortensen, A. K., Farkhani, S., Karstoft, H., Jensen, N-P.
& Nyholm Jørgensen, R. (2019).
Species distribution mapping of grass clover leys using images for targeted nitrogen fertilization. I
Precision agriculture ’19 (s. 639-645). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_79
Skovsen, S. (Producent), Dyrmann, M. (Producent), Mortensen, A. K. (Producent), Laursen, M. S. (Producent), Gislum, R. (Producent), Eriksen, J. (Producent), Farkhani, S. (Producent), Karstoft, H. (Producent) & Nyholm Jørgensen, R. (Producent). (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Datasæt
https://vision.eng.au.dk/grass-clover-dataset/
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Poster session præsenteret ved IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, California, USA.
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H. & Nyholm Jørgensen, R. (2019).
The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. I
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops IEEE.
http://openaccess.thecvf.com/content_CVPRW_2019/html/CVPPP/Skovsen_The_GrassClover_Image_Dataset_for_Semantic_and_Hierarchical_Species_Understanding_CVPRW_2019_paper.html
Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P.
, Dyrmann, M., Andersen, P., Jensen, N-P. & Green, O. (2019).
Marrying futuristic weed mapping with current herbicide sprayer capacities. I J. V. Stafford (red.),
Precision Agriculture 2019 - Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 231-237). Wageningen Academic Publishers.
https://doi.org/10.3920/978-90-8686-888-9_28
Wang, H.
, Mortensen, A. K., Mao, P.
, Boelt, B. & Gislum, R. (2019).
Estimating the nitrogen nutrition index in grass seed crops using a UAV-mounted multispectralcamera.
International Journal of Remote Sensing,
40(7), 2467-2482.
https://doi.org/10.1080/01431161.2019.1569783
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R.
& Nyholm Jørgensen, R. (2018).
Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.