Gebreyesus, G., Cheruiyot Bett , R., Nakimbugwe, D.
, Hansen, L. S., Nielsen, H. M., Karstoft, H., Bjerge, K., Nkirote Kunyanga , C., MBI Tanga, C., Mwikirize, C., Akol, R., Katumba, A., Khamis, F., Kinyua, J., Walusimbi, S., Geoffrey, S., Roos, N.
& Sahana, G. (2024).
Prospects of implementing black soldier fly (BSF) selective breeding in Kenya and Uganda: Status from the FlyGene Project. Abstract fra Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Nawoya, S., Ssemakula, F., Akol, R.
, Geissmann, Q., Karstoft, H., Bjerge, K., Mwikirize, C., Katumba, A.
& Gebreyesus, G. (2024).
Computer vision and deep learning in insects for food and feed production: A review.
Computers and Electronics in Agriculture,
216, Artikel 108503.
https://doi.org/10.1016/j.compag.2023.108503
Nawoya, S., Geissmann, Q., Karstoft, H., Bjerge, K., Akol, R., Katumba, A., Mwikirize, C.
& Gebreyesus, G. (2024).
Computer-vision based prediction of body traits and larval sex in black soldier fly. Abstract fra Insects for the Green Economy: Sustainable Food
Systems and Livelihoods in Africa, Nairobi, Kenya.
https://qgg.au.dk/fileadmin/site_files/mb/QGG/Billeder/FLYgene/book-of-abstracts-insects-for-the-green-economy-conference-feb2024.pdf
Sahana, G., Gebreyesus, G., Cheruiyot Bett , R., Kinyua, J., Roos, N., MBI Tanga, C., Mwikirize, C., Akol, R., Khamis, F. M.
, Karstoft, H., Bjerge, K., Nkirote Kunyanga , C.
, Hansen, L. S., Nielsen, H. M., Lund, M. S., Geoffrey, S., Walusimbi, S. & Nakimbugwe, D. (2024).
FLYgene: Advancing Sustainable Breeding Programs and Genomic Tools for Black Soldier Fly (Hermetia illucens) in Kenya and Uganda. I
Book of Abstracts of the 75th Annual Meeting of the European Federation of Animal Science (s. 633-633)
https://docs.eaap.org/boa/2024_Florence_EAAP_Book_Abstracts.pdf
Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M. & Karstoft, H. (2023).
Hierarchical classification of insects with multitask learning and anomaly detection.
Ecological Informatics,
77, Artikel 102278.
https://doi.org/10.1016/j.ecoinf.2023.102278
Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M. & Karstoft, H. (2023).
Hierarchical Classification of Insects with Multitask Learning and Anomaly Detection. bioRxiv.
https://doi.org/10.1101/2023.06.29.546989
Dobbs, A. M., Ginn, D.
, Skovsen, S. K., Yadav, R., Jha, P., Bagavathiannan, M. V., Mirsky, S. B., Reberg-Horton, C. S. & Leon, R. G. (2023).
Using structure-from-motion to estimate cover crop biomass and characterize canopy structure.
Field Crops Research,
302, Artikel 109099.
https://doi.org/10.1016/j.fcr.2023.109099
Gislum, R., Larsen, R., Thomsen, I. K., Greve, M. B., Hansen, E. M. & Nyholm Jørgensen, R., (2023).
Betingelse for indsamling af data til brug for omregningsfaktor mellem NDV/NDRE og planteoptag af kvælstof, Nr. 2023-0543874, 8 s., aug. 23, 2023. Rådgivningsnotat fra DCA - Nationalt Center for Fødevarer og Jordbrug
Skovsen, S. K., Kutugata, M., Jennewein, J., Reberg-Horton, C. S. & Mirsky, S. B. (2023).
Detailed Species Competition Mapping of Mixed Cover Crop Species Using Tractor Mounted Color Camera and Computer Vision. Abstract fra 2023 ASA/CSSA/SSSA International Annual Meeting, St. Louis, Missouri, USA.
Dobbs, A. M., Ginn, D.
, Skovsen, S. K., Bagavathiannan, M. V., Mirsky, S. B., Reberg-Horton, C. S. & Leon, R. G. (2022).
New directions in weed management and research using 3D imaging.
Weed Science,
70(6), 641-647.
https://doi.org/10.1017/wsc.2022.56
Kragh, M. F., Rimestad, J., Lassen, J. T., Berntsen, J.
& Karstoft, H. (2022).
Predicting embryo viability based on self-supervised alignment of time-lapse videos.
IEEE Transactions on Medical Imaging,
41(2), 465-475.
https://doi.org/10.1109/TMI.2021.3116986
Farkhani, S., Skovsen, S. K., Dyrmann, M., Nyholm Jørgensen, R. & Karstoft, H. (2021).
Weed classification using explainable multi-resolution slot attention.
Sensors,
21(20), Artikel 6705.
https://doi.org/10.3390/s21206705
Lati, R. N.
, Rasmussen, J., Andujar, D., Dorado, J., Berge, T. W., Wellhausen, C., Pflanz, M., Nordmeyer, H., Schirrmann, M., Eizenberg, H., Neve, P.
, Jørgensen, R. N. & Christensen, S. (2021).
Site-specific weed management—constraints and opportunities for the weed research community: Insights from a workshop.
Weed Research,
61(3), 147-153.
https://doi.org/10.1111/wre.12469
Lindahl Petersen , K., Ladegaard Jensen, K., Back Nielsen, M., Pas, L.-C., Jensen, N.-P., Nielsen, P. R., Bøjer, O. M.
, Nyholm Jørgensen, R., Laursen, M. S., Teimouri, N. & Hartmann, B. (2021).
Analyse af mulige herbicidbesparelser ved brug af erfaringer og data fra RoboWeedMaPS. Datalogisk Institut.
https://datalogisk.dk/wp-content/uploads/2021/03/MST_20rapport_version_2_2002092021.pdf
Skovsen, S. K., Laursen, M. S., Kristensen, R. K., Rasmussen, J., Dyrmann, M., Eriksen, J., Gislum, R., Nyholm Jørgensen, R. & Karstoft, H. (2021).
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks.
Sensors,
21( 1), Artikel 175.
https://doi.org/10.3390/s21010175
Somerville, G. J., Mathiassen, S. K., Melander, B., Bøjer, O. M.
& Nyholm Jørgensen, R. (2021).
Analysing the number of images needed to create robust variable spray maps.
Precision Agriculture,
22(5), 1377-1396.
https://doi.org/10.1007/s11119-021-09800-3
Farkhani, S., Skovsen, S. K., Mortensen, A. K., Laursen, M. S., Nyholm Jørgensen, R. & Karstoft, H. (2020).
Initial evaluation of enriching satellite imagery using sparse proximal sensing in precision farming. I C. M. U. Neale & A. Maltese (red.),
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII (Bind 11528). Artikel 115280A SPIE - International Society for Optical Engineering.
https://doi.org/10.1117/12.2573626
Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L.-C. & Nyholm Jørgensen, R. (2020).
Open Plant Phenotype Database of Common Weeds in Denmark.
Remote Sensing,
12(8), Artikel 1246.
https://doi.org/10.3390/rs12081246
Christiansen, M. P.
, Teimouri, N., Laursen, M. S., Mikkelsen, B. F.
, Jorgensen, R. N. & Sorensen, C. A. G. (2019).
Preprocessed sentinel-1 data via a web service focused on agricultural field monitoring.
IEEE Access,
7(1), 65139-65149. Artikel 8715769.
https://doi.org/10.1109/ACCESS.2019.2917063
Eriksen, J., Frandsen, T. S., Knudsen, L.
, Skovsen, S., Nyholm Jørgensen, R., Steen, K. A.
, Green, O. & Rasmussen, J. (2019).
Nitrogen fertilization of grass-clover leys. I O. Huguenin-Elie, B. Studer, R. Kölliker, D. Reheul, M. Probo, P. Barre, U. Feuerstein, I. Roldan-Ruiz, P. Mariotte & A. Hopkins (red.),
Improving sown grasslands through breeding and management: Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section "Fodder Crops and Amenity Grasses", Zürich, Switzerland, 24-27 June 2019 (s. 103-109). Wageningen Academic Publishers.
Farkhani, S., Kragh, M. F., Christiansen, P. H., Nyholm Jørgensen, R. & Karstoft, H. (2019).
Sparse-to-Dense Depth Completion in Precision Farming. I
Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, ICVISP 2019: Proceedings of the 3rd International Conference on Vision, Image and Signal Processing Artikel 35 Association for Computing Machinery.
https://doi.org/10.1145/3387168.3387230
Gislum, R., Nyholm Jørgensen, R., Thomsen, I. K., Hansen, E. M. & Olesen, J. E., (2019).
Beskrivelse af setup for vidensindsamling og måling af NDVI-værdi i pilotprojekt om biomasse, Nr. 2019-760-001283, 3 s., jul. 03, 2019.